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FOREWORD 

Enhanced capabilities for Orbital Transfer Vehicles (OTV) will be needed 
in the mid to late 1990's to meet expanding payload requirements for trans- 
porting materials and possibily men to high Earth orbit. It is anticipated 
that the new OTV will embody significant departures in current design and 
operational philosophy for upper stages. A 2-day conference at the NASA Lewis 
Research Center focused on the issues for future OTV. 

The status and technology needs of aeroassist maneuvering, propulsion, 
and cryogenic fluid usage were presented. Industry panels discussed the 
servicing of reusable space-based vehicles and propul sion-vehicle integration. 

This publication is a compilation of the materials from the presentations 
and panel discussions. 

Larry P. Cooper 
Conference Chairman 
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NASA OAST PERSPECTIVE 

Frank Stephenson 
NASA Headquarters 

An advanced OTV i s  one o f  a  number o f  advanced STS v e h i c l e s  t h a t  t h e  NASA 
OAST Space Systems D i v i s i o n  T ranspo r t a t i on  Systems O f f i c e  has i d e n t i f i e d  as 
candidates f o r  f u t u r e  v e h i c l e  development. Veh i c l e  requi rements  as w e l l  as 
techno logy  needs and need dates have been es tab l i shed  and techno logy  programs 
i n i t i a t e d  t o  suppor t  those  p o t e n t i a l  developments i n  a  t i m e l y  manner. 

It i s  assumed t h a t  t h e  advanced OTV w i l l  be space based and f u l l y  
reusab le  f o r  low c o s t  opera t ions ,  w i l l  use a e r o a s s i s t  f o r  r e t u r n  t o  
low-Ear th -o rb i t ,  and w i l l  evo lve  t o  a  man-rated system. The p r o p u l s i o n  system 
w i l l  need t o  m a i n t a i n  h i g h  performance over  a  wide t h r u s t  range f o r  rnission 
f l e x i b i l i t y ,  r ang ing  f rom t h e  t r a n s f e r  o f  l a r g e ,  a c c e l e r a t i o n  l i m i t e d  
s t r u c t u r e s  f rom LEO t o  GEO, t o  demanding h i g h  r e l i a b i l i t y  r o u n d - t r i p  manned 
miss ions .  Technology advances a re  needed i n  p ropu l s i on ,  aerobrak ing,  
l ow -g rav i t y  c ryogen ic  f l u i d  management, and i n  env i r onmen ta l l y  compat ib le ,  
low- loss cryogenic  tankage. I n  a d d i t i o n ,  d i a g n o s t i c  i n s t r u m e n t a t i o n  f o r  
m o n i t o r i n g  t h e  h e a l t h  o f  on-board components and systems, and automated 
check-out c a p a b i l i t y  w i l l  enhance low-cost  space based OTV ope ra t i ons .  

The technology programs c u r r e n t l y  i n  p l ace  w i t h i n  OAST w i l l  p rov i de  t h e  
techno logy  base i n  t i m e  t o  suppor t  a  mid-1990's OTV I O C  date ,  p rov ided  
proposed FY 86 augmentations i n  advanced p r o p u l s i o n  and i n  aerobrak ing  
technology,  i n c l u d i n g  a  f l i g h t  exper iment,  a re  approved, and i f  a  focused 
techno logy  program i n  l i g h t - w e i g h t ,  low- loss cryogenic  tankage i s  i n i t i a t e d  i n  
t h e  near  f u t u r e .  
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NASA OSF PERSPECTIVE 

QRmMAK PAGE .$A 

OF POOR QLiAEiTV 

L. Edwards 
NASA Headquarters 

No t e x t  a v a i l a b l e  a t  t i m e  o f  p r i n t i n g .  
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ORBITAL TRANSFER VEHICLE (OTV) 

IN CARGO BAY BEHIND ET 
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UTILIZATION OF SPACE-BASED OTV 
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CRYO vs STORABLE FOR OTV 

r UPCOMING COYTRACTS WILL  INCLUDE TRADEOFFS 

r CRY0 Y I L L  BE NEEDED EVENTUALLY 

r CRYO TAKES ADVANTAGE OF SCAVENGING FROY ET 

ONLY CRYO PERMITS SINGLE REUSABLE STAGE FOR SPACE-BASED MISSIONS 

r INTERESTING POSSIB IL ITY  FOR MANNED GEO WISSIONS: 

- CRYO/EXPENDABLE GOING TO GEO 

- STORABLE/REUSABLE FOR LOITER AND RETURN 

Figure 7 

KEY REQUIREMENTS FOR OTV E m &  

Q SUITABLE FOR SPACE BASING s REUSE 

- LONG LIFE,  illANY STARTS 

- EASY CHECKOUT 

- EASY SERVICING/MAINTENANCE/REPLACEMENT UNLESS THESE CAN BE 
SHOWN TO BE UNNECESSARY 

r COMPATIBLE WITH AEROBRAKE 

r I, AT LEAST 4 6 0  SECONDS 

e THRUST 1 5 - 2 0 K  POUNDS (MR 6 : l )  

r ALTERNATE THRUST N 1 5 0 0  POUNDS (NO K I T S )  

- VARIABLE THRUST MAY BE USEFUL BUT NOT MANDATORY 

r STOWED LENGTH NOT OVER 5 5  INCHES 

r OCCASIONAL MANNED FLIGHTS 

- MAY REQUIRE DUAL ENGINES 

Figure 8 
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SHUTTLE/CENTAUR PROJECT PERSPECTIVE 

Edwin T. Muckley 
Na t i ona l  Aeronaut ics  and Space A d m i n i s t r a t i o n  

Lewis Research Center 

The Shu t t le /Cen taur  v e h i c l e  i s  be ing  developed as an expendable, c r yogen i c  

h i g h  energy upper s tage  f o r  use w i t h  t h e  Na t i ona l  Space T r a n s p o r t a t i o n  

System (NSTS). The s tage  i s  expected t o  meet t h e  demands o f  a  wide range 

o f  users  i n c l u d i n g ,  NASA, t h e  DOD, p r i v a t e  i n d u s t r y  and t h e  European Space 

Agency (ESA). The Shu t t le /Cen taur  w i l l  be a  m o d i f i c a t i o n  o f  t h e  h i g h l y  

success fu l  Centaur stage, used e x t e n s i v e l y  w i t h  t h e  A t l a s  and T i t a n  

boos te rs  s i n c e  1966 t o  launch p l ane ta r y ,  geosynchronous and e a r t h  s r b i t a l  

m iss ions  f o r  these  aforement ioned users.  Th i s  paper descr ibes  t h e  des ign  

changes r e q u i r e d  f o r  use w i t h  t h e  NSTS. These a re  p r i m a r i l y  r e l a t e d  t o :  

1)  tank  r e s i z i n g  t o  t a k e  advantage o f  t h e  o r b i t e r  pay load bay dimensions; 

2 )  p r o v i s i o n s  f o r  p h y s i c a l l y  adop t ing  Centaur t o  t h e  o r b i t e r ;  and, 3) 

accommodating s a f e t y  requi rements  o f  t h e  manned NSTS. The paper w i l l  a l s o  

desc r i be  t h e  expected performance c a p a b i l i t i e s  of two ve rs i ons  o f  t h e  

Shu t t le /Cen taur .  The i n i t i a l  ve rs ion ,  des ignated G-prime, i s  t h e  l a r g e r  

o f  t h e  two, w i t h  a  l e n g t h  of about 9.lm (30 f t . ) .  T h i s  v e h i c l e  w i l l  be  

used t o  launch t h e  G a l i l e o  and I n t e r n a t i o n a l  So la r  P o l a r  M iss ions  ( I S P M )  

t o  J u p i t e r  i n  May 1986. The G a l i l e o  t o  be launched f o r  NASA's J e t  

P ropu l s i on  Laboratory ,  w i l l  o r b i t  t h e  p l ane t ,  observe i t s  s a t e l l i t e s ,  and 

a  probe p o r t i o n  w i l l  separa te  and descend i n t o  t h e  Jov ian  atmosphere. The 

European Space Agency ISPM spacec ra f t  w i l l  use J u p i t e r ' s  mass t o  d e f l e c t  

i t s  t r a j e c t o r y  o u t  o f  t h e  e c l i p t i c  p lane  and ga ther  da ta  i n  t h e  sun p o l a r  

r eg ion .  



The second ve rs i on  of t h e  Shut t le /Centaur  des ignated t h e  G veh ic le ,  i s  

about 3.0m ( t e n  f t . )  s h o r t e r  than t h e  G-prime. Th i s  s h o r t e r  s tage a l s o  

takes advantage o f  t h e  o r b i t e r  4.6m (15 f t . )  diameter, b u t  maximizes t h e  

spacecra f t  l e n g t h  c a p a b i l i t y  i n  t h e  pay load bay t o  about 12.2m (40 ft.). 

I t  is  c u r r e n t l y  scheduled t o  launch payloads f o r  t h e  DOD, t h e  NASA Venus 

Radar Mapper and TDRSS Miss ions  i n  1988, and i s  expected t o  p r o v i d e  launch 

se rv i ces  w e l l  i n t o  t h e  1990's. 





LEWIS RESEARCH CENTERiCENTAUR ORGANIZATION 
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SHUTTLE/CENTAUR IMPLEMENTATION POLICY 

ShuttleiCentaur is a NASAIUSAF cooperative program 

@ Project management has been assigned to a joint NASAIUSAF 
project office at the NASA Lewis Research Center 

Funding is provided by both agencies 

Figure 3 

SWUTTLE/GENTAUR PROGRAM 
MANAGEMENT RELATIONSHIPS 

Miss~orl 
Management 

Galileo 

Centaur 
Contractors 

F i g u r e  4 



General 

@ Design 8 develop a high-energy upper stage 
For use with Space Transportation System 

@ Two versions will be developed 

s Performance 
- 10,000 Ib to geosynchronous orbit 
- 1 1,500 Ib to 12-hr orbit 

@ Accommodate a 40-ft payload in orbiterlbay 

Support two USAF missions 

NASA 

Performance 
- Meet interplanetary velocity requirements 

@ Accommodate a 30-ft payload 
r Support Galileo & ISPM missions in 1986 

F i g u r e  5 

CENTAUR INTEGRATED SUPPORT SYSTEM 
MINIMIZES CHANGES TO SI3UTTLE 

radiation shield 

ada 

IMGIstar scanner 

Insulation blanket & 
radiation shield 

Centaur integrated 
support system (CISS) 

F i g u r e  6 



CENTAUR CONFIGURATIONS 

J 30.4 f t  
available for 

1 soacecraft 

available for 
spacecraft 

L---- 1 5.0 f t ---1 
Centaur G 

Xo 947 

Forward adapter 

, Forward 
I 

170 In -- 
adapter 

- ! I  

, , 
&--- 15.0 f t  ------I 

Centaur G-prime 

F i g u r e  7 

CENTAUR INTEGRATED SUPPORT SYSTEM 

Propellant disconnect panel 
ClSS electronics 

Deployment adapter 

Forward support 
Aft support system1 

Fluid services 

F'rgure 8 



CENTAUR AVIONICS 

IWERTIAL REFEAEWCE UllFl 

1 l iontrol 

Power aD  OD-pecul~ar 

Figure 9 

CBSS AVlONlCS SYSTEMS 

BAT?ERY 
SIC POWER TAANSFER UNIT 
TELEMETRY WTEiRFICE UNIT 
EWCAYPTOfl 
BATTERY BUSStNG UNIT 
POWER TRANSFER UNlT 

SIC 
DEU 
BU 
SEU 
SCU 
w 
RMU 
W 
CCLS 
RCU 

CCVAPS 
W F T A S  

BAT 
PTU 
TW 
ECPTR 
BBU 
PTU 

- Data 

a - Control 

- Power 

- DoD.pecullar 

ABBREYSATIONS 
DlhaUTAL COMPUTER UN1T 
CONTROL UNIT 
COl+4BWOL OlSTAlEiUTlON UNlT ClSS PCM 
REMOTE MULTIPLEXER UNIT D O W N L l l K  

ELECT316CAl DISTRIBUTION UNIT 
BATVER'd 
PYROTIECHNiC INITIATOR CONTROL UNIT PlCU 
UPllHK DOWNLINK UNIT UDU 

F i g u r e  10 
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CENTAUR MAIN PROPULSION SYSTEM 

From pressure 
regulation system 

Centaur-6' Centaur-6 

P&W engine RL10A-3-3A RL10A-3-3B 
Mixture ratio 5: 1 6: 1 
Thrust 16,500 Ibf 15,000 Ibf 
ISP 446.4 sec 440.4 sec 

F i g u r e  11 

CENTAUR VEHICLE MODIFICATIONS 
FOR SHUTTLE COMPATIBILITY 

New TDRSS-compatible 
S-band transmitter 
& RF system 

Added star scanner (optional) 

Dual failure-tolerant Forward adapter (composil:e 

armlsafe unit (DUFTAS) stub adapter) 

New 170-in. diameter 
tank cylindrical 
section 8 insulation 

New conical 
transition to LH2 tank 

New propellant dump systern 
Added cylindrical 
section to LO2 tank 

New aft adapter (composite skin) 

F i g u r e  1 2  



ORBITER MODIFICATIONS 
FLUID CONNECT & OUTLET LOCATIONS 

Dump panel 
LH2 dump outlet 

Opposite side 
LO2 dump. LO2 

Midbody 1-0 (was T-4 
0 LH2 ground fill 8. 
* GH2 ground vent 

LH2 purge vent 

Opposite side o n - o r b i t  vent on 
LO2 ground t ~ l l  8. drain 

OMS 
dram 

F i g u r e  1 3  

SIjUTTLE/CENTAUR LAUNCH OPERATIONS FLOW - ELS 
VPF - KSC 

CiGAFS SKID STRIP - ETR . FIUAI PI F A  

OR SPlF - ETR 
. .. . . . - - - - . . CEN'"""'P'"" 

* MATE SPACECRAI 

. 
HANGAR J - ETA , TANK 

IRUNL.I** 

:T TO CENTAUR 
c o m  v MULWSE MISSION '* % e COMBINE0 SVSTElni wrnrnoto~rmr s - FUNCTIONAL TESTING SUPPOAT iOUlPMENT 

SUPER - m - -  ,, IMMSEl CANISTER: 

GUPPY '-+a 
CX36A - ETR - SYSTEMS BUILDUP. LEAK CHECKS & 

FllMCTlONAL TESTING 
ING 6 TERMINAL 

COLlWTDOWN OEMONSTRATlON 
RECEIVING MsPEcTlon 
ClSS REFURBISH 

? 

ClSS REFURBISHMENT 
TO HANGAR J -. 

\ 
I 

SHUITLE LAWMWG 
FACILITY (SLF) - KSC 

LANWNG 5 ORBITER OPF - KSc 
BRELIIIUARY SAFING REMOVE ClSS FROM ORBITEA BAY 

11 1 7 - 3 7  11 TRANSPORTER 

/4-\ 
1 I l l 0  w 

k 6 x 3 9  LAUNCH PAD - KSC /- 
/ 

/ . COMBINED SYSTEMS 
/ C O M P ~ ~ ~ L ~ Y  T ~ S ~ W G  

/ FINAL SERVICING. 
/ l!'-z-l L-il TANKING 5 LAUNCH 

* MOVE ORBITER TO OPF a PREPARE CIS6 FOR TRAHSPOAT 
TO HAMGAR J I 

F i g u r e  1 4  

24 



FLIGHT OPERATIONS 

&?"I "":, Free 

t 

Ground Tracking 

Landing 

F i g u r e  1 5  

SHUTTLE/GIF,NTAUR INTEGRATED SGHEDUXJE 

Centaur G-prime - NASA 

Centaur 8. Centaur lntegratlon S 
Structure (CISS) development 

Software - GSE development 

Centaur & CISS manufactur~ng 

Eastern Launch Slte 

Vehlcle processlng 

Vehlcle processlng 

Centaur G - DOD 

Centaur & Centaur lntegratlon Support 
Structure (CISS) development 

Software - GSE development 

A START V COMPLtTE 0 GOVERNMENT MILESTONE 0 GPC MILESTONE 

F i g u r e  1 6  



INTERNATIONAL SOEAR POLAR MISSION (ISPM) 

@ Fits1 ever exploration far from ecliptic plane & sun polar region 
(out of ecliptic) 

Gravitational field of Jupiter used as "sling shot" 

@ Cooperative program with ESA (European Space Agency) 

@ Single launch using Shuttle & Centaur 

@ hfabghP of spacecraft: 350 kg 

Launch: May 1986 

Figure 17 

ISPM MISSION 

Figure  18 



PROJECT GALILEB WILL INVESTIGATE THE . . . 
compc 
~ i a n  sa 

Structure & physical dynamics of the Jovian 
magnetosphere 

F i g u r e  1 9  

GALILEO 

ssition & physical states 
~tellites 

Chemical composition & physical state 
of Jupiter's atmosphere 

F i g u r e  20 
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SPACE STATION TASK FORCE PERSPECTIVE 

C. Hicks 
NASA Headquarters 

No t e x t  a v a i l a b l e  a t  t ime o f  p r i n t i n g .  

PRESENTATION OUTLINE 
- 

PRELIMINARY PROGRAM DESCRIPTION 

- DEFINITIONS 

- FUNCTIONS 

- CAPABILITIES 

- MANAGEMENT APPROACH 

- SCHEDULES 

SPACE STATION SERVICING CAPABILITY 

SPACE STATION - ORBITAL TRANSFER VEkIICLE (OTV) PROGRAM 
INTERFACES 

F igure  1 

SPACE STATION PLANNING 
GUlRELlMES 

MANAGEMENT RELATED 

Three year extensive definition 
(5-10% of program cost) 

NASA-wide participation 

Development funding in FY 1987 

IOC: early 1990's 

Cost of initial capability: $8.OB 

Extensive user involvement 

- Scienco and rppllcatlons 
- Technoloyy 
- DoD 
- Commarcial 

International participation 

Figure 2 

Preceding page blank 

ENGlNEERlNG RELATED 

Continuously habitable 

Shuttle dependent 

Manned and unmanned 
eiements 

Evolutionary 

Maintainoblelrestorable 

Operationally autonomous 

Customer friendly 

Technology transparent 



SPACE STATION PROGRAM 
ARCHITECTURE: WHAT IS A SPACE STATION 

GROWTH ELEMENTS BASE 

/- 

UNMANNED PLATFORMISI 

F i g u r e  3 

FUNCTIONS OF A SPACE STATION 

On-orbit laboratory 

- Science and applications 
- Technology 

Permanent observatory(s) 
0 Transportation node 

Servicing facility 

- Free flyers 
- Platforms 

Communications and data processing node 
* Manufacturing facility 
0 Assembly facility 

Storage depot 

(Aspace station is a multi-purpose facility] 



SPACE STATION 
FlJTlJRE 

LOW COST 
REUSAHI E 

PLATFOIIM 
COMMUFllCAllONS % 

TRQNSPOHTITION 

F i g u r e  5 

SPACE STATION 
INITIAL 

ASSEMBLE LRAGE 
STRllCTURES 

P l  ATFORM 

LICE SCIENCES 
SERVICING 

F i g u r e  6 



THE RELATIONSHIP BETWEEM TltlB SPACE STATlOM 
PROGRAM AND OTHER PRBGRAMS 

... 

OSER COMMUNITY 

" u Y L H C I * L i t A r 1 0 "  

S S  PROGRAM 

S P A C E  "6 r l r O R "  
SPHERE OF 

S P A C T  S I I ~ Y I C L S  tgw I 81 
OM" YY"lhP.C[ S l i i l  

UPPER STAGE PRWR 

6.0. L X l t N b l O  O U R I T I O U  
E x P I H O A Q L E  I v 
A, t LAROO CInnlrn 

F i g u r e  7 

SPACE STATION DEFIBa91TION 
PREEQMlNARY MISSlON DATA BASE 

SCIENCE AND APPLlCATlONS 
Astrophysics 
karth S ~ i e n c e  and Appltcetlona 
Solar System Exploration 

* Ini t ial  Deta Base Life Sclancas 
Materials Science 

* Derived from Shuttle end Communlcatior~a 
ELV Base 

COMMERCIAL 
Will Change aa Station Capabilities Marertals Procesrlny In Spechi 

Become Better Understood and Earth and Qceenr Qbrervef~ons 

Mission Priorities Shift Communlcatlon~ 

Not the List of MisslonIPayloeds TECHNoLQCV 
the Sta t ion  Will Fly in 1991 Mnterinla arid Structures 

Energy Conversion 
Computer Scisnco and Eloctronlca 
Propulalon 
Controlr and Human F a ~ l o r 6  
Specs Station Syblems/Operallons 

Fluld and Thermal Physics 

F i g u r e  8 



SCOPE OF INlTlAL SPACE STATION 

L l F E  S C I E N C E S  

I N T E R N A L  P A Y L O A D S  1- 

1 p a  OMV S E R V I C I N G  1 
S A T E L L I T E  SERVICING 

I 
I 

I N T E R N A L  E X T E R N A L  

F i g u r e  9 

ADDED SCOPE FOR INTERNATIONAL 
AND COMMERCIAL PARTfCIPATION 

1 
I 
I 

I JAyf,":SE I E S A  L A B  / F ~ ~ ~ ~ ~ ~ $ s  I 
MPS A & D  I.ARSflATORY I CO-ORQITIHG 

- - I  PI A FTOl(ld 
L I F E  S C I E N C E S  
L 4DOf3ATORY f , POLAR PL.ATFORM 

I N T E R N A L  - 

I IVINI: n -, - " A R r C R S  

L O G I S T I C S  I-- CONTROL 
S A T E L L I T E  SERVICING 

P* ) 'LOAD/STRUCTURE 
A S S E M D L Y  

, S C A R  F O R  D T V  

i 
I 

I I 4 T t  RNAI. E X T E R N A L  

F i g u r e  10 



SCOPE OF GROWTH CONFIGIJRATION 

POLAR P L A T F O R M  

LOG13TICS 

I N T E R N A L  E X T E R N A L  

Figure  11 

T H E  SPACE STATION PROGRAM \&ILL EVOLVE 
THROUGH A "BLOCK" SIER!%$ 

0 M O O U L L S  

* PLATFORktS - P I I C E  F L ' i L R S  

. ADDITIONAL. LlOOIJLES . O T V  IiANI.?LIIS 

* PUVAt1c;tn T k C t I N O L O G Y  

ADOlT1O144L P L A l F O R l A S  

* ADDITIONAL 0 1  V 

r ADDlTlONAl  C H f  W 

A I ~ D I I I O N A I .  TMS 
* A~JOITIONAI .  CAPAB. 

F U L L  OPERC+TIONAL (>AI'ABILITY 

PRESENT 1990s 

F i g u r e  1 2  
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SPACE STAT ION PROGRAM EXlEdbkD DEFINITION 

0 SCOPE AND DURATION BEYOND "PHASE B" 
@ TWO CONTRACTORS COMPETE FOR E ~ c l - 1  WORK PACKAGE 
@ PRODUCTS ARE A BLEND OF DOCUMENTATION AND tiARDWARE 

DEMONSTRATIONS 

SYSTEMS ANALYSIS 
.OVERALL CONFIG BASCLINE . FIRM INTERFACE DEF. . COMMON IIARDWAIIE REQTS. 

SRR 
ELEMENT DEFINITION - 
.PHASE B PLANS AN0 

DESIGN CONCEPTS 
* SUBSYSTCM SPECS. . CEI  SPECS. 

ELEMENT PRELIMINARY 
DESIGN 

r PRELIMINARY DESIGN . UOCKUPS AN0 SIMULATION . FINAL OOTE PROPOSALS 

HARDWARE DEMON. 
DDTLE  

BLOCK BLOCK II DEFINITION 
I I  

SDR 
t==2n 

Figure 1 3  

SPACE SPATlON OVERALL SCHEDULE 

FISCLL YEAR 

[ ~ ~ j s 6 1 a r ~ o a ~ l i s ~ ~ ~ j 9 2 1 9 3 1 9 4 1 9 _ 5 ~ ~ j 9 7 1 9 8 j 9 9 1 0 0 ~  

I SPACE STATION I I 

I SUBSEQIJENT EVOLUTION 1 A A h A A  A 1 

EiASA CONCEPT DEV. 

DEFlNlTlON PHASE(S) 

DESIGN. DEV.. TEST 4 
EVALUATION 

OPERATIONS 

ORBITAL TRANSFER I I O C A  I VEHICLE I 

-1 

---- 

-- - -- -. . - . - ---a 

COR - CRITICAL DE516N R E V l t  W A -  I N C R t A S E D  CAPABIL ITY 

F O C  - F U I U R E  OPLRATlON4L CAPABIL ITY . - ON HOAR0 Ef iPLRIUENlS.  BLHVICE. AN0 P L A T F O R U S  

IOC . lMiTIAL OPLHATlOllAL C A P A I I I  I T Y  

IRR  - I N l r R F A C t  R L O U I H E M t N T S  R t V l t W  
h L R  - B Y S I E U  DtYII ' .N R t V I t W  
6HH - 8 ( $ 1 E U  REOLI IHEUENIS REVIEW 

090-610 

ORBITAL MAFlEUVERlNG 
VEt1ICL.E 

USER REQUIREMFNTS 1 

F i g u r e  1 4  
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SPACE STATION PLANNING SCHEDULE 

- 

r R E O U I R E ~ ~ . ~ I T S  a ANALYSIS 

.- ).IISSlC11 ANbLYblS SIWY 
COII IRACIS 

- SYSTEM HtU(!UiEMENTS a 
BflCt~lIECTLllil: 

01 SYSTEUS GEI I t i I i i J ~  
a aUvfiIlCE6 DE'IELDPMCNT PRSCRAM 
* IECliNU-O!;Y PHUtiH.414 

AIP - AUTllOilll Y TO PROCtED PDH - PRLLIMINAHI DLSiGN REVIEW 
CbR - CflITILAL DESlCN REVltW S:IR - SYSTEM DESIGN ~ C V I E W  

KX - tau O E R A ~ A L  CCPPABLF~Y SRH - SYSTEM REQUIREMENTS REVIEW 
IRR - Ur IERFACE MCURkIUWITS RtVIEW 

F i g u r e  1 5  

--- 

MILES FONES 

ADVANCED DEVELWMILEITLEADCENTER / ASSIGNMENIS 
PRELIMINARY DETERMINATION OF INT'L hlOl)E I OF COOPERATION 
ADMINISTRATOR'S INT'L VISIT 
FIRST DRAFT Di' Pt-IASE B WORK PACKAGE 
MiSSI0t.J REQIJIREMENTS REPOR 1- 
Il4ITIATE CIEFII.II1'ION CONTRACI PHASC A 

SE4 ACTIVITIES 
"SKiJiuti WORKS" EXERCISE 
REVIEW OF l l i 7 ' L  POSITION 
CGNGRESSiGllAL AUTtIORIZATION COIdFEREE 

ACTION 
CONGRESSIONAL APPt?OPRlATlON COEIFEREE 

ACTION 
INT'L COOPERATION PllkSE B FINAL DECISION 
PtiASE B DEFINITION CINTRACTS 

8 / 2 0  
A 

A F P  1 9 3 L i E O x Z 8  8 '2;~~@p08AL3 
CENTER ROLES 8. kiSSION DECISION 
ESTAOI..ISiI SPACE STATION PItOGI!AM OFFICE 
COt4MERCIAL DEVELOPMENT REPORTS 
DEFINll ION CONTRACTS BEST AND FINAL 

PfiOPOSALS Sll3E.1ITTED 
UEFINIIIOP~ CCOF~TFIACIS SOURCES SELECTED 
A l p  U12~)A'IE hllSSlON RtaUIREMENrS 
DEFiNlTiON CON> PACTS AU rllORITY TO 

PRGCEED --- 

F i g u r e  1 6  



QF 
S P A C E  STATION PROGRAM DEF(NITIoN A C T I V I T Y  

Figure 1 7  

SPACE S T A T I O N  SERVlCRNG CAPABILITY 

THE SPACE STATION BASE WlLL  HAVE THE CAPABILITY TO 
SERVICE OR PROVIDE SERVICING SUPPORT FGR: 

@ PAYLOADS ATTACHED TO PI lE  STATION 

@ SATELLITES BROUGHT TO THE STATION BY THE TMS OR 
SERVICED REMOTELY BY THE TMS 

@ TMS BASED AT THE STATION 

@ CO-ORBITING PLATFORM AND ITS  PAYLOADS 

@ LARGE SPACE STRUCTURE TDM'S 
PAYLOADS TO BE P L A C E D  IN ORBIT BY THE TMS AND TO 
BE LAUNCHED TO HIGHER ENERGY ORBITS 
SPACE-BASED RELJSEABLE OTV 

@ SATELLITES IN GEO SERVICED REMOTELY B Y  THE TMS 

SERVICING FUNCTIONS AT THE SPACE STATION WILL INCLUDE: 

@ REPLENISHMENT OF CONSUMABLES 

PROPELLANT S 
PRESSURANT S 
COOLANTS 

@ RECHARGING/REPLACEMENT OF BATTERIES 

@ CONSTRUCTION OF LARGE SPACE STRUCTURES 

ASSEMBLY (POSSIBLE FUELING) AND MATING OF PAYLOADS 
e CHECKOUT 

- SATELLITES - TMS - OTV - PAYLOADS 
@ REPAIR AND UPGRADING, PRIMARILY BY ORU EXCHANGE 

Figure 18 



SERVBirClMG FACILFTIIES AT THE SPACE STAT I O N  

SUPPORT STRUCTURE 

REMOTE MANIPULATOR S Y S T E M  (RMS) - R E L O C A T A B L E  

MANIPULATOR FOOT RESTRAINT CMFR) 

" MANNED MANEUVERING UNITS (MIUIU) - TWO 

* MODULAR EQUIPMENT STORAGE A S S E M B L Y  (MESA)  

@ GENERAL STORAGE AREA - ENCLOSED 

IWMUIS, MFR, MESA 

@ WORK AREA (CGNSTRIJCTION OF L A R G E  SPACE STRUCTURES)  

@ E X T E R N A L  WORK S ITE MONITORING AND CONTROL S T A T I O N  
(IN A PRESSURIZED MODULE) 

MLILTIPURPOSE PRESSURIZED WORK 
VOL-1-IME-NEED TO BE DETERMIPIED L 

O R B I T A L  TRANSFER VEEICI-E (OTV) F A C I L I T I E S  

@ BERTHS - W0 
@ P R O P E L L A N T  AND P R E S S U R A N T  T A N K S  

@ ELECTWPCAL POWER S T A T I O N  

CHEGECOUT EQUIPMENT 

HANGARS UNPRESSURIZED - TWO 

@ P A Y L O A D  A S S E M B L Y  J C i i E C K O U T  AREA - ENCLOSED 

" STORAGE AREA - ENCLOSED 

S P A R E  ASSEMBLIES,  ORUISS, MANNED GEO 
MBSSlON MODULE 

F i g u r e  19 

THE SERVICING FACIL ITY  AND OPERATlOMS 

* PLACE SEVERE REQUIREMENTS ON TI-iE SPACE STATION 

- SAFETY 
- CONTAMINATION 
- CONTROL STATION VIEWING OF SERVICING OPERATIOFIS 
- APPi?OACH/DEPARTURE CORRIDORS 
- TI-IERMAL CONTROL OF FLUIDS STORED ON THE STATION 
- EVA CORRIDORS 
- ACCESS ro PRESSURIZED WORK VOLUME (IF DEEMED P~ECESSARY) 
- CONSiJMABLES AEII) CARGO TRANSFER 
- ATTITUDE CONTROL AND PROPULSION 
- RMS REACH CAPABILITY 
- POSSIBLE CRYOGENIC PROPELLANT BOIL-OFF USAGE (ECLS, 

PEOPULSION. POWER) 
- GROWTH CAPABILITY 

@ AFFECT OTHER ELEMENTS OF THE SPACE STATION 
- SCIENTiFIC INSTRUMENTS FIELDS OF VIEW 
- G LEVEL OF Tt-IE LABORATORIES 
- CONTAMINATION OF ENVIROtJMEN'r 

-- 
THE SERVICING FACIL-ITY P.ND OPERATIONS ARE A hAAJOR C FOR BOTH TkHE INITIAL AND GROWTH STATIONS 

-. -- - 

F i g u r e  20 



CRITBCWL TECHNOLOGY DEVELOPMENT FOR 
O M V / O T V / S A I E L L I T E  SERVICING --- 

a FLUID MANAGEMENT 

- CRYOGENICS - STORABLE FLUIDS 

a LONG-TERM ORBITAL STORAGE OF CRYOGENICS 

e CONTAMINATION CONTROL/REMOVAL 

e IMPROVED EXTRAVEHICULAR MANEUVERING UNIT (EMU) 

e ROBOTIC SERVICING CAPABILITY 

RENDEZVOUS, APPROACH, AND BERTHING 

- OMV 
- O'FV 
-- SATELLITES 
- PLATFORM 

F i g u r e  21 

DESIRABLE FEATURES FOR A SPACE STATION BASED OTV -- 
.a SPACE MAINTAINABLE 

si MODULAR 

@ HIGH REUSEABILITY 

SIMPLE PAYLOAD INTEGRATION AND SERVICING 
CAPABILITY 

SYNERGISTIC WlTH SPACE STATION SYSTEMS/ 
ELEMEM r s  

e COMMONALITY WlTH SPACE STATION SYSTEMS/ 
ELEMENTS 

@ STANDARDIZED INTERFACES - OMV, SATELLITES,  
SPACE STATION 

e GROWTH CAPABILITY 

* I-1IGti EFFiClENCY (LOW WEIGHT, HIGH ISP) 

@ NON-CONTAMINATING 

@ WIDE THRUST LEVEL CAPABILITY 

TOP LEVEL SERYECINC FACILiTV ISSUES 
.-- 

a OTV PROPELLANT DEPOT LOCATION 

- ATTACHED 

- TETHERED 

- FREE FLYING 

e DEGREE OF SERVICING AUTOMATIOEI 

- INITIAL STATION 

- GROWTH STATION 

e NEED FOR A PRESSURIZED WORK VOLUME 

F i g u r e  22 

PROPOSED OTV TECHNOLOGY DEVELOPMENT 
FLIGHT EXPERIMENTS 

SHUTTLE SORTIE FLIGHTS ( 1 9 8 7  - 1990) 

PROPELL ANT TRANSFER, STORAGE, AND REFRIGERATION/ 
RELIQUEI'ACTION 

@ DOCKING AIQD BERTHING 

a EMUfEVA OPERATIONS 

a PAYLOAD MATING/INTERTACE 

@ OTV SHELTER STRUCTURE 

e SERVICING FACILITIES/EQUIPMENT 

TECHNOLOGY DEVELOPMENT MISSIONS ON S P a e E  S T A T ~ Q N  
( 1 9 9 1  - ) 

@ PROPEL.LANT I RAEISTER, STORAGE, AND REFRIGERAI ION/ 
RELIQCIEFACTION 

U U G K I N G  ANU BERTHING 

@ MAINTENAEJGE 

* PAYL o m  IrqTEGTcalloN 
S P A C E - B A S E D  OTV O P E R A T I O N S  (%99$) 

F i g u r e  24 



ORBITAL TRANSFER VEHICLE (oav) - 
SPACE STA'BlON PROGRAM INTERFACES 

S E E  - SOURCE E V A L U A T I O N  BOARD 
IRN - I N T E R F A C E  REOII IREMENTS REVIEW 

SRR - S Y S T E M  REOUIREMENTS REVIEW 

SOR - S Y S T E M  DESIGN REVIEW 

P O R  - P R E L I M I N A R Y  D E S I G N  R E V I E W  

COR - C R I T I C A L  D E S I G N  R E V I E W  

P D R  C D R  

O SPACE S T A T I O N  D E V E L O P M E N T  

F i g u r e  25 



PERFORMANCE ASSESSMENT OF AERO-ASSISTED ORBITAL TRANSFER V E H I C L E S  

Richard W .  Powel l ,  Theodore A .  Talay,  Alan W .  W i l h i t e  
John J.  Rehder, Nancy H. White, J.  Ch r i s  N a f t e l ,  Howard W.  Stone,, 

James P.  A r r i n g t o n ,  and Ronald S. McCandless 
NASA Langley Research Center 

The NASA Langley Research Center i s  per fo rming  analyses o f  ae ro -ass is ted  
o r b i t a l  t r a n s f e r  v e h i c l e s .  The s t u d i e s  t o  da te  have been t o  determine t h e  
aerodynamic c h a r a c t e r i s t i c s  over  t h e  f l i g h t  p r o f i l e  and t h r e e -  and 
six-degree-of- f reedom performance analyses.  

The impo r tan t  r e s u l t s ,  t o  da te ,  a re :  1) The Aerodynamic P re l i n l i na r y  
Ana lys is  System, an i n t e r a c t i v e  computer program, can be used t o  p r e d i c t  t h e  
aerodynamics (performance, s t a b i l i t y ,  and c o n t r o l )  f o r  these  v e h i c l e s ;  2 )  t h e  
performance c a p a b i l i t y ,  e.g. maximum i n c l i n a t i o n  change, maximum hea t i ng  r a t e ,  
and maximum sensed a c c e l e r a t i o n ,  can be determined us i ng  cont inuum 
aerodynamics on l y ;  3 )  guidance schemes can be developed t h a t  a l l o w  f o r  e r r o r s  
i n  atmospher ic d e n s i t y  p r e d i c t i o n ,  m i sp red i c t ed  t r i m  ang le  o f  a t t a c k ,  a n d  
of f -nomina l  atmospher ic i n t e r f a c e  c o n d i t i o n s ,  even f o r  v e h i c l e s  w i t h  a l o w  
l i f t - t o - d r a g  r a t i o ;  and 4)  m u l t i p l e  pass t r a j e c t o r i e s  can be used t o  reduce 
t h e  maximum h e a t i n g  r a t e .  



FLIGHT PROFILES 

VELOCITY, 

ID-" f t / s e c  2 0  

APOLLO CAPSIILE 

ALTITUDE, l om3  f t  

Figure 1 

FOR LOW L!FT/DRA@ 
/- DEPLOYABLE 

r LOX r L H 2  

Figure 2 
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LOW LID CONCEPT PERFORMANCE AERODYNAMICS 

I I I I I 
-40 -30 -20 -10 0 

a, degrees 

Figure 3 

AOTV CONFIGURATION FOR MEDIUM LIFTIDRAG 

34 ft 25 ft- 

Figure  4 
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MID LID CONCEPT PERFORMANCE AERODYNAMICS 

10 2 0 30 40 
a, degrees 

F i g u r e  5 

AOTV CONFIGURATION FOR WlGH LIFTIDRAG 

--k ADJUSTABLE 
TR 1 M FLAP 

INFLATABLE CHINE 

F i g u r e  6 



HIGH LID PERFORMANCE AERODYNAMICS 

a, degrees 
Figure 7 

AOTV LID PERFORMANCE COMPARISON 

Figure 8 



GEOSYNCHRONOUS ORBIT MlSSBON USING AN 
AEROASSISTED TRANSFER VEHICLE 
r TRANSFER BURN 

GEOSYNCHRONOUS 
O R B I T  

/ GEO-LEO 1 
r TRANSFFR /JI I lLn n. mi. C IRCULARIZAT ION \ BURN 

300 n. 
PHAS l 

ORB1 

. - 
ORB l 

\ 

mi. 
N G 
T 

BURN AND 
RENDEZVOUS 

F i g u r e  9 

ANALYSIS  TECHNIQUE 

o 3-0 PROGRAM TO O P T I M I Z E  SIMULATED TRAJECTOR I E S  (POST) 

GEO-LEO TRANSFER-TIMING, DURATION, ANGLE 

o 4TblOSPHER I C  PASS-400,000 FT INTERFACE ( 1962 U ,  S, STANDARD) 

o A L L  VEHICLES HAVE A L I F T  C A P A B I L I T Y  

o M A I N T A I N  CONSTANT ANGLE OF ATTACK DURING PASS 

o ROLL VEHICLE ABOUT VELOCITY VECTOR TO VARY L I F T  D IRECT ION 

o TARGET TO 300 NMI PHASING ORBIT,  28.5' INCL INAT ION,  SAME LONGITUDE OF 
ASCENDING NODE AS SHUTTLE 

o 3-BURN PROPULSIVE SEQUENCE LEADS AOTV TO RENDEZVOUS WITH SHUTTLE ORBITER 

F i g u r e  10 



ALTITUDE HISTORIES FOR MAXIMUM RETURN WEIGHT AOTV'S; 

300 - 

ALTITUDE, 
ft 

250 - 

200 - 

I W/CDA BASED ON CONTINUUM FLOW 

w, 150 
100 200 300 400 500 600 700 

TIME, sec 

Figure 11 

ORBIT INCLINATION HISTORIES FOR MAXIMUM 
RETURN WEIGHT AOTV'S 

AERODYNAMIC PLANE CHANGES BASED 
ON H I G H  ALTITUDE V ISCOUS FLOW 

0 100 200 300 400 500 600 700 
TIME, sec 

Figure 1 2  



DYNAMIC PRESSURE HlSTOWlES FOR MAXIMUM 
RETURN WEIGHT AOTV'S 

r 

TRAJECTOR IES BASED ON 
V I  SCOUS- INTERACTION 
A E R O D Y N A M I C S  

Figure 13  

ACCELERATION HlSTOWlES FOR MAXIMUM 
RETURN WEIGHT AOTV'S 

4 r 

TRAJECTOR I E S  BASED O N  
V I S C O U S - I N T E R A C T I O N  
A E R O D Y N A M  l CS 

TIME, sec 

Figure 1 4  



REFERENCE HEATING RATE HISTORIES FOR 
MAXIMUM RETURN WEIGHT AOTV'S 

600 i- 
I HIGH 

500 

400 

TRAJECTORIES BASED ON 
q rnax * 

2 300 VISCOUS-INTERACTION 
B T U I  ft -sec AERODYNAMICS 

200 

100 

0 100 200 300 400 500 600 700 
TIME, sec 

Figure 1 5  

PERFORMANCE COMPARISON OF AN ALL-PROPULSIVE OTV 
WITH AOTV'S FOR GEO ROUND-TRIP M ISS IONS 

OTV TYPE 

I N I T I A L  
WEIGHT, L B  

WEIGHT RETURNED 
TO SHUTTLE, L B  

I'lAXIMUM STAGNATAT ION 
POINT  HEATING RATE TO 
A 1 FOOT RADUS SPHERE, 

B T U / F T ~  -SEC 

MAXIMUM SENSED 
ACCELERATION. 
G 'S 

Figure 16 



I-MFTIDRAG HISTORIES OF MAXIMUM RETURN WEiGHT AOVV'S 
2 . 0 r  CONTINUUM FLOW 

------ 

HIGH ALTITUDE 
Vl  SCOUS FLOW 

TIME, sec 

Figure 1 7  

AOBV WEIGHT RETURNED TO SHUTTLE 

CONTINUUM 
FLOW 
H1GH ALTITUDE 
Vf SCOUS FLOW 

30x 300 n. mi. 

MID L ID  

ANGLE-OF-ATTACI(, deg 

Figure 18  
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SIX-DEGREE-OF-FREEDOM SIMULATION ANALYSIS 

ANALYSIS UNDERTAKEN TO : 

1) S I Z E  THE REACTION CONTROL SYSTEM (RCS) 

2 )  EVALUATE GUIDANCE ALGORITHMS 

3) CONFIRM THREE-DEGREE-OF-FREEDOM ANALYSIS 

CONTROL SYSTEM DESIGNED U T I L I Z E D  RCS ONLY 

THREE GUIDANCE ALGORITHMS EVALUATED 

1) PREDICTIVE TECHNIQUE 

2 )  DRAG REFERENCE ALGOTITHM DERIVED BY OLIVER H I L L  OF NASA-JSC 

3) REFERENCE ORBITAL ENERGY - FLIGHT PATH ANGLE REFERENCE ALGORITHM 

F i gu re  19  

i B W  VD CONFIGURATION RESPONSE CHARACTER I S T I C S  

f i  P ot  
deg ' 

E - 
E 

1 / 

YAW RCS, 
Thrusters 

-1 L 

ROLL RCS. 
Thrusters 

TIME, sec 

F i gu re  20 



GUIUANCE A L G O R l l I l H  

0 AOTV I S  COIIMAWOED TO F L Y  T l lE  OPTIMUM ORBITAL FIICI!GY ' IS IEIERTl Al. F L l G I l T  PAT l i  

ANGLE PROFILE THAT HAD BEEN DElERMlELED FROM A 3 nCGl?CE-OF-FREEDOM AbIALYSlS 

0 AOTV I S  COMMANDED TO F L Y  CONSTANT ANGLE OF ATIACK 

0 I N C L I H A T I O N  I S  CONTROLLED BY ROLL REVEfISALS 

To1 erance 1- - - /,///' 
Olllil iAL ENERGY 

F i g u r e  21 

OTV LOW L/D NOMINAL ATMOSPHEiiE 

YAW RCS. 
Thrus t e r s  

ROLL RCS, 
Tnrus i e r s  

TIME. sec 

F i g u r e  22 



SHUTTLE-DERIVED ALTITUDE-DENSITY PROFILES 

F i g u r e  23 

O W  LOW L /a  NOMINAL ATMOSPHERE 

PITCH RCS, 
T h r u s t e r s  

TiME. s e c  

F i g u r e  24 



COMPARISON OF ATMOSPIIER IC PASS FOR LOW L/D CONFIGURATION 

E X I T  APOGEE, NMI 

E X I T  FERIGEE, NMI 

E X I T  iidCLINATION, DEG 

TOTAL ATMOSPHERIC 
PASS TINE, SEC 

E3~TCt I  RIS 
ON-TIME. SEC 

RC)i..i. MCS 
ON- I I ME, SEG 

YAW RCS 
O N - T I  ME, SEC 

Figure 25 

COMPARISON OF ATMOSPHERIC PASS FOR LOW L/D CONFIGURATION 

TRIMMED ANGLE-OF-ATTACK VARIATIONS 1 

3: i . / t \ , I U 4 T I O M ,  UEG 

tO"fAl., ATMCSI'I-IER 3G 
"/\SS " v -  I a:~t, SEC 

- p, * 
:t*.?l.i.. !?C$' 
Jbl-7 IFIE, SEC 

Figure 26 
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COMPARISON OF ATMOSPHERIC PASS FOR LOW L/D CONFIGURATION 

I ENTRY FLIGHT PATH ANGLE VARIATIONS i 

VACUUM PERIGEE, NMI 

EXIT APOGEE, NMI 

EXIT PERIGEE, NMI 

EXIT INCLINATION, DEG 

TOTAL ATMOSPHERIC 
PASS TIME. SEC 

PITCH RCS 
ON-TIME, SEC 

ROLL RCS 
ON-TIME, SEC 

YAW RCS 
ON-TIME, SEC 

Figure 27 

COMPARISON OF AOTV TRAJECTORIES 

GEOSYNCHRONOUS 

Figure 28 



EFFECT OF NUMBER OF PASSES ON HEAT RATE 

r 

qmax* 

BTUI~? sec 

NUMBER OF PASSES 

Figure 29 

CONCLlJS I ONS 

: 4FPS !S A13PLICABLE FOR AOTV's AND CAN BE USED TO PREDICT AERODYNAMICS FROM THE FREE 
rqOl-EiULBR FLOW REGEON TO THE CONTINUUM REGION 

: THREE DaF ANALYSIS SHOWED THAT CONTINUUM AERODYNAMICS I S  ADEQUATE FOR PERFORMANCE 
EVALUATION 

o S I X  3aF ANALYSIS SHOWED C A P A B I L I T Y  TO TOLERATE OFF-NOMINAL ATMOSPHERIC DENSITY  PROFILES, 
n !SS-"PREDlCTlYE TR IM ANGLE-OF-ATTACK, AND OFF-NOMINAL ATMOSPHERIC INTERFACE CONDITIONS 

c YULTI-PASS TRAJECTORIES OFFER POTENTIAL TO REDUCE MAXIMUM HEATING RATES 

Figure 30 



LOW LIFT-TO-DRAG AERO-ASSISTED ORBIT TRANSFER VEHICLES 

Dana G. Andrews and Richard T. Savage 
Boeing Aerospace Company 

The r e s u l t s  o f  a  systems a n a l y s i s  s tudy  conducted on low L/D 
aero -ass is ted  o r b i t  t r a n s f e r  v e h i c l e s  (AOTV1s) i s  presented.  The o b j e c t i v e s  
o f  t h i s  a c t i v i t y  were t o  (1)  s y s t e m a t i c a l l y  assess t h e  techno logy  requi rements  
f o r  t h i s  c l a s s  o f  v e h i c l e  and f o rmu la te  techno logy  development p lans  and 
f und ing  l e v e l s  t o  b r i n g  t h e  r e q u i r e d  t echno log ies  t o  readiness l e v e l s ,  and ( 2 )  
develop a  c r e d i b l e  d e c i s i o n  da ta  base encompassing t h e  e n t i r e  range o f  l o w  L / O  
concepts f o r  use i n  f u t u r e  NASA AOTV s t u d i e s .  

The s tudy  approach was t o  s e l e c t  s u i t a b l e  AOTV concepts,  address major  
f e a s i b i l i t y  i ssues ,  and generate  workable c o n f i g u r a t i o n s  f o r  use i n  
t r a j e c t o r y /  aerothermal  analyses.  Subsystem t r ades  examined t h e  impact  o f  
d i f f e r e n t  techno logy  l e v e l s  on v e h i c l e  performance and noted t h e  l e v e l s  
r e q u i r e d  t o  meet bas i c  ope ra t i ng  requi rements .  F i n a l l y ,  t echno log ies  were 
ranked i n  o r d e r  o f  importance towards meet ing low L/D AOTV des ign goa ls ,  and 
program and techno logy  f und ing  cos t s  were es t imated .  

Study r e s u l t s  showed t h a t  each o f  t h e  cand ida te  low L/D concepts,  t h e  
aerobrake, t h e  l i f t i n g  brake, and t h e  aeromaneuvering concept cou ld  be made t o  
work w i t h  t echno log ies  ach ievab le  by t h e  e a r l y  1990 's .  A l l  o f  t h e  concepts 
r e q u i r e d  f l e x i b l e  s t r u c t u r e  w i t h  f l e x i b l e  thermal  p r o t e c t i o n  system (PPS) t o  
be s u c c e s s f u l l y  i n t e g r a t e d  i n t o  t h e  s h u t t l e  o r b i t e r  f o r  launch, a l l  r e q u i r e d  
improvements i n  guidance and c o n t r o l  (G&C) t o  f l y  t h e  d ispersed  atmospheres a t  
h i g h  a l t i t u d e ,  and a l l  concepts had p o t e n t i a l  t o  evo lve  f rom ground-basea t o  
space-based opera t ions .  

The c r i t i c a l  advancements i n  t echno log ies  r e q u i r e d  t o  implement t h e  low 
L/D AOTV concepts were i n  TPS, e s p e c i a l l y  f l e x i b l e  TPS, i n  aerothermal 
p r e d i c t i o n  methods, and i n  G&C. Other  areas where techno logy  advancements 
appeared t o  be c o s t  e f f e c t i v e  ( i . e . ,  sav ings i n  use outweighted development 
c o s t s )  were p ropu l s i on ,  atmospher ic phys ics  ( p r e d i c t i o n  methods), r a ~ r i f i e d  gas 
aerodynamics, and composite s t r u c t u r e s .  



Study  Objectives 

4) DEFINITION OF A TECHNOLOGY PLAN FOR LOW L ID  AOTV'S 

@8 ENABLING AND HIGH PAYOFF TECHNOLOGIES IDENTIFIED 

REALiSTlC CONSTRAINTS ON TECHNOLOGY FUNDING LEVEL ASSUMED 

B TIME PHASED PLAN DEVELOPED FOR REASONABLE IOC DATE 

@ DEVELOPMENT OF A DECISION DATA BASE FOR FUTURE NASA AOTV STUDIES 

e INVESTIGATE CONCEPTS Tt-IROUGHOUT THE ENTIRE LOW L ID  RANGE 

@ ADDRESS THE CRITICAL VEI-IICLE TECttNDLOGlES 

a INCLUDE OPS ANALYSES 

@ DEVELOP EVOLUTIONARY GROWTH SCENARIOS 

ESTIMATE COSTS INON.RECURRING, RECURRiNG AND OPS) 

Figure 1 

Technical Approach 

@ SYSTEMS TRADES 

r SELECT CANDIDATE CONCEPTS AND RESPOND TO FEASIBILITY ISSUES 

s, USE WORKABLE CONFIGURATIONS I N  TRAJECTORY/AEROTHERMAL ANALYSES 

r USE MANNED MISSION TO DESlGN ALTERNATE OPERATIONAL MODES 

@ SUBSYSTEM TRADES 

* BUILD FROM PHASE A-OTV DATA BASE 

r INCORPORATE ADVANCED TECHNOLOGIES 

ASSESS TECCINOLOGY PAYOFFS 

@ TECHNOLOGY PLANNING 

s IDENTIFY CURRENT, NORMAL GROWTH, AND ACCELERATED GROWTH 
TECHNOLOGIES 

c RANK TECHNOLOGIES WITH RESPECT TO PROGRAM REQUIREMENTS 

* PLAN TECHNOLOGY DEVELOPMENT 

8 COST ANALVSES 

o USE WORK BREAKDOWN STRUCTURE 10 ESrlMATE SUBSVSTEM COSTS 

e ESTIMATE PROGRAM COSTS 

o ESTIMATE TECHNOLOGY FUNDING REQUIREMENTS 

F i g u r e  2 
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Design Mission Requirements 

@ BASELINE DESIGN MISSIONS (65K STS) 

0 GEO DELIVERY 

0 6 x GEO DELIVERY 

0 6 HR. POLAR DELIVERY 

@ EVOLUTIONARY GROWTH MISSIONS 

0 UNMANNED SERVICING (NOT A DESIGN DRIVER) 

0 MANNED GEO MISSION (KEY DESIGN MISSION I N  A L L  MODELS) 

e 14,000 LB. ROUND TRIP 

e REQUIRES ALTERNATE OPERATING MODE 

0 BASIC TECHNOLOGY TRADES WERE DONE USING VEHICLESSIZED 
I-OR BASELINE MISSIONS 

0 MANNED GEO MISSION WAS USED TO SIZE EVOLUTIONARY GROWTH 
CONFIGURATIONS AND DETERMINE WORTH OF ALTERNATE 
OPERATING MODES 

2 

Figure 3 

Low L/D AOTV Characteristics 

(BASELINE CONCEPTS) 

AEROBRAKE (LID-0) LIFTING BRAKE (L/D=0.25L AEROMANEUVFRING (L/Q=O.?a 
BALLISTIC 
COEFFICIENT.W- 5-10 PSF 5.10 PSF 

CD A 
25-45 PSF 

CONTROL VARIABLE C A MOVEMENT QF CG VARIABLE BANK ANGLE 

TEC~INIOUE USING INTEHTJAL IN Y - - Z  PLANE USING AEIJUNDANT 
PRESSURE USING ELECl ROMECHNI.CAL RCS THRUSTERS 

ACTUATOHS 

METHOD OF NONE 
AERODYNAMIC TRIM (STABLE) SAME AERODYNAMIC TRIM SURFACES 

KEY 
ISSUES 

GUIDANCE & CONTROL GUIDANCE & CONTROL TRANSPIRATION COOLING OF 
IN  3GATMOSPtiERE IN  36ATMOSPHERE NOSE CAP 

DYNAMIC STABILITY FLOW INPINGEMENT THERMAL CONTROL 
OF INFLATED STRUCTURE ON BODYIPAYLOAD 

Figure 4 



Lifting Brake Configuration 

PROPOSED DESIGN FINAL BASELINE 

MAJOR MAJOR 
CHANGE: CHANGE: 

I) 
NON POROUS 

I) 
EDGE 

&4 RADIUS 
INFLATABLE 
BRAKE 

AREAS OF CONCERN -- 
as YaEPLC"dME%dT MECHANISM 

a POWOhdS HEAT SHIELD 

dB E A N K  ANGLE CONTROL 

@ SUlDBrh'CE & CONTROL I N  
36-AT rdQSBHERE 

B i  FLOW IMPINGEMENT 
O h  BODVIPAYLOAD 

AREAS OF CONCERN AREAS OF CONCERN 

@ NO RETURN PAY LOAD s CONTROL w i T n  RETURN 
@FLOW IMPINGEMENT PAY LOAD 

ON BODV/PAYLOAD B STS INTEGRATION 

B, G&C IN WATMOSPHERE 

@ STS INTEGRATION 

a NON-POROUS FABRIC: BOUNDARY LAYER 
TEMPERATURE CONTROL 

Figure  5 

Aeromaneuver Configuration 

STUDY lNlTlATlON 

r- BASELINE 

MAJOR 
CHANGE: 

INFLATABLE 
NOSE, 

TRANSPIR - 
ATION 
COOLED 

AREAS OF CONCERN 

&TRANSPIRATION COOLED 
NOSE 

RATIONALE FOR CHANGE 

F i g u r e  6 

60 



Aerobrake Configurations 

STUDY INITIATION BASELINE 

0 JET COUNTERFLOW 
INTERACllION * 

@FLEXIBLE TPS 
0 INFLATE0 

STRUCTURE 
STABILIT'I 

AREAS OF CONCERN 

0 DYNAMIC STABILITY OF 
INFLATED STRUCTURE 

G U I D A N C E  & CONTROL 
I N  3fATMOSPHEHE @INFLATED 

STRUCTURE 
.INTERACTION BETWEEN STABILITY 

BALLUTE, JET COUNTER- 
FLOW, & FREE STREAM 
FLOW . FLEXIBLE TPS 

0 TESTING OF FLEXIBLE BALLUTE AND TPS PRODUCED NO BALLUTE "SHOW STOPPERS'" 

0 ALTERNATIVE PROPOSED TO ELIMINATE JET COUNTEHFLOW UNCERTAINTY 

F i g u r e  7 

System/Concept Findings 

@ NONE OF LOW LID CONCEPTS ELIMINATED BY TECHNOLOGY ISSUES 

@ MUCH OF THE TECHNOLOGY REQUIRED IS COMMON 

g ALL  CONCEPTS SIGNIFICANTLY BETTER UNDERSTOODIIMPROVED 

0 PERFORMANCE AND OPERATIONAL FLEXIBILITY ADVANTAGE TO AEROBRAKE 

LIFTING BRAKE AND AEROMANEUVERING APPLICATIONS LIMITED BY AFT C.G. AND/OR 

FLOW IMPINGEMENT CONCERNS 

0 ALTERNATE OPERATIONAL SCENARIOS 
e ACC: EXCELLENT CONFIGURATION FOR LIFTING BRAKE; NO SIGNIFICANT IMPACT 

ON AEROBRAKE; AEROMANEUVERING IS NOT APPLICABLE 

@ SPACEBASING/MANNED MISSION: NOT A SIGNIFICANT DISCRIMINATOR EXCEPT FOR 
PERFORMANCE 

SOCLV: ATTRACTIVE OPTION WITH AEROASSIST 

@ FOR ALL  CONCEPTS THE MAJOt7 UNRESOLVED ISSUES CONCERN REAL GAS FLOW EFFECTS 
AND THE DYNAMICS OF FLEXIBLE STRUCTURE AT THESE CONDITIONS 

e MORE TESTING REOUIHED TO PROVIDE DESIGN DATA 

9 FLIGHT EXPERIMENTS NEEDED TO RESOLVE ALL  DOUBTS 

FOR ALL  CONCEPTS UPPER ATMOSPHERIC DISPERSIONS ARE A MAJOR DESIGN DRIVER 

DESIGN DATA NEEDED -SOME TESTING REQUIRED 

e FLIGHT EXPERIMENTS IMPORTANT TO PROVE GN&C SYSTEMS 

@ NO SIGNIFICANT COST DISCRIMINATORS FOUND BETWEEN LOW LID CONCEPTS 

F i g u r e  8 



Technology Drivers 

TECHNOLOGY ISSUE - COMMENTS 

THERMAL BEAK TEMPERATURE NEED TO ACCELERATE TECHNOLOGY GROWTH 
PROTEGTlOFd CAPABILITY OF FLEXIBLE SURFACE INSULATION (FSIJ 

AEROTHERMAL THERMAL ENVIRON- INCREASED ACCURACY IS REQUIRED TO FULLY 
METHODS MENT PREDICTION CHAHACTEt?IZE THERMAL EhV1RONMENT 

ATMOSPtiERlC AEROPASS REQUIRES MORE ADVANCED ADAPTIVE 
GUIDANCE GUIDANCE SYSTEM 

PROPULSION HIGHER PERFORM- 
ANCE ENGINE 

ATMOSPHERIC HIGH ATMOSPHERE 
PHYSICS DESCRIPTION 

AERODYNAMlCS RAREFIED FLOW 
EFFECTS 

STRUCTURES STRUCTURAL 
WEIGHT REDUCTION 

DEVELOPMENT OF AN ADVANCED LHZ/L02 HlGHEA 
ENGINE IS COST EFFECTIVE 

BETTkR UNDERSTANDING OF THE: UPPER 
ATMOSPHERE SIMPLIFIES GN&C AND THERMAL 
PROBLEMS 

ENHANCE GUIDANCCSYSTEM ACCURACY 

UTlLlZlNG ACCELERATED TECHNOLOGY GROWTH 
IS  COST EFFECTIVE 

Technology Ranking 

a DEVELOP TRANSPIRATION COOLING 

AEROTHEWMAL METHODS 0 BLUNT BODY FLOW UNDERSTANDING 
WITH AND WITHOUT JET COUNTERFLOW 

6 BOUNDARY LAYER TWANSITlON GRlTERlA 
c NQN.EOUIILIBRIUM WADlATDOM 

OPTIMAL GUIDANCE APPROACHES 
" CONTROL FUNCTION DEVELOPMENT - SVSTEU VALIDATION 

ATMOSHERIG PHYSICS a TETHER DATA ANALYSIS 
8 LASER RALEIGH BACKSGAnER 

AEWODYNrnICS 6 DETERMINE RAWEFlED FLOW EFFECTS 

Figure 10 

6 2 



Technology Plan Summary 

0 REASONABLE DEFINITION OF TECHNOLOGY REQUIREMENTS AND OBJECTIVES 

0 CLEAR DISCRIMINATION BETWEEN REQUIRED VERSUS ENHANCED TECHNOLOGIES 

@ ENABLING TECHNOLOGY PROGRAM CAN BE ACCOMPLISHED TO SUPPORT PROGRAM 
START IN LATE 1980's FOR APPROXIMATE TOTAL $ = 65.6 MILLION 

FLIGHT DEMONSTRATION EXPERIMENT($) EXTREMELY DESIRABLE-POWERFUL 
BENEFITS- 

0 DEMONSTRATES GN&C CONCEPTS AND ALGORITHMS 

PROVIDES NEEDED AERODYNAMICSIAEROTHERMAL DATA 

0 VERIFIES DYNAMICSTABILITY OF FLEXIBLE BALLUTE 

e VERIFIES TPS PERFORMANCE I N  ACTUAL FLIGHT ENVIRONMENT 

e ENHANCING TECHNOLOGiES APPEAR TO HAVE HlGH PAYOFF (NOT QUANTIFIED 
IN ALL  CASES) 

@ THIS IS STILL A "FIRST CUT" PLAN AND NEEDS ITERATION 

AOTV Thermal Criteria 

SURFACE TEMPERATURE - 100 REUSES 

TPS MATERIAL IBBO TECHNOLOGY I1886 IOCI 
CURRENT TECHNOLOGY 

FLEXIBLE SURFACE 1600°F - lBOo°F 
INSULATION (FSII 

RIGID SURFACE 
INSULATION IRSI) 

HlGH DENSITY 
REFRACTORY (HOR) 

BACKWALL TEMPERATURE 

HIGHER TEMPERATURE STRUCTURES ARE POSSIBLE. BUT ARE NOT 
CONSIDERED ADVANTAGEOUS BECAUSE OF THERMAL CONTROL 
CONSTRAINTS 

MATERIAL 

GRAPHITEIPOLYIMIDE * 

KEVLAR CLOTH 

Figure  1 2  

MAXIMUM TEMPERATURE 

600' F 

600' F 



Flexible Surface InsuBation TechnoPo~y Assessment 

~ ~ C L U D E S  50% FAC i on FOR NE RADIATION, ETC. 

EMlTTAMCE - 0.8 A NO LlFT 

LIFTING BRAKE 

TECHNOLOGY 

1 

Figure 13  

Rigid Surface Insulation Technology Assessment 
" Ttamaaxu-*'L ***amaems 

EWIITTWNCE = 0.8 
INCLUDES 50% FACTOR FOR NE RADIATION. ETC. 

A NO LlFT 

O SIDE LIFT (BANK = 00") 

0 DOWN LIFT {BANK - 180") 

LOFTING BRAKE AEROMANEUVERINC 

I I 

Figure 14  



High Density Refractory Technology Assessment 

NORMAL 
GROWTH 

CURRENT 
TECHNOLOGY 

EMITTANCE - 0.8 
INCLUDES 50% FACTOR FOR NE RADIATION, ETC. 

A NOLlFT - 
0 SIDE LIFT (BANK - 000) 
a DOWN LIFT (BANK - 180°) 

NORMAL GROWTH TECHNOL.OGY OK 

AEROBRAKE 
(NOSE CAP) 

A 
6 x GEO 
UNMANNED 

A 
1 x GEO 
UNMANNED 

F l g u r e  1 5  

Examples of High Payoff Technology Assessment 

LIFTING BRAKE 
(NOSE CAP) 

ACCELERATED GROWH TECHNOLOGY COST EFFECTIVE FOR AOTV'S I 

AEROMANEUVERING 
(OTV CORE) 

SUBSYSTEM 

ACCELERATED GROWTH 
STRUCTURAL 
COMPONENTS (10% 
WEIGHT REDUCTION) 

NORMAL GROWTH 
EXPANDER CYCLE 
ENGINE (480 SEC ISP) 

ACCELERATED GROWTH 
EXPANDER CYCLE ENGINE 
(490 SEC ISP) 

b COSTS BASED ON 6 FLIGHTS/YEAR FOR TEN YEARS lNOM MISSION COST- $81.BM) 

b BASELINE LCC- S6,632M, BASELINE GEO PAYLOADS - 526,400 LB (10,700 $/LB) 

IS> TECHNOLOGY DEVELOPMENT FINANCED BY OTHER PROGRAMS 

0 
6 x GEO 
MANNED 

UNMANNED 1 x GEO 

1 x GEO 
MANNED 

MANNED , 
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DELTA GEO 

280 LB 

1330 LB 

1.W3 LB 

DELTA 
TECHNOLOGY 

DEV COST 

rD 

E 8M 

S l l M  

DELTA DDT&E 
COST 

$ 35M 

$430M 

$630M 

GEO PAYLOAD 
COST 
D 

10,490 WLB 

10,013 S/LB 

9,802 WLB 

P 

RELATIVE 
SAVINGS 

!D 

210 SlLB 

I 
887 I i l 0  I 

I 

8Q8 blLO 



c AEROBRAKED AOTV IS RECOMMENDED CONCEPT IF  DEVELOPMENT WERE TO START 
TODAY 

e BEST PERFORMANCE, LEAST COST, MOST STS COMPATIBLE, ETC. 

s CONTROL METHOD REOUIRES MORE DEVELOPMENT (NEEDS TESTING) 

a REUSABLE TPS (RIGID AND FABRIC) WITH CAPABILITY TO 300Q°F 

r MORE ACCURATE AEROTHERMAL PREDICTION METHODS 

GN&C SYSTEMS SUITABLE FOR AEROASSIST REENTRY TRAJECTORIES 

e ADVANCED EXPANDER CYCLE ENGINE TECHNOLOGY 

@ IF SPACE BASING BECOMES PRIMARY OPERATING MODE THEN A SPACE ASSEMBLED 
LllT'TIYdG BRAKEIAEROMANEUVERING CONCEPT SHOULD ALSO BE PURSUED 

PA DESIGN FOR COMPLETE REUSABILITY 

s USE L I D  TO REDUCE PROPULSlVE AV, PEAK HEATING, AND EFFECT OF 
ATMOSPHERIC DISPERSION 

F i g u r e  1 7  

Fresh Look Lifting Brake Designed for Space Assembly 

@ ST§ COMPATIBLE OTV MOUNTED 
USING SI-IUTTLE FIXTURES 

ttb OTV JAN BE EITHER GROUND 
BASED OR SPACE BASED 

@ NO NOZZLE RETRACTION REQUIRED 

GWiJSS TRIM ACCOMPLISHED BY 
SLIDING OTV ON RAILS 

@ COMBINE BEST FEATURES OF LIFTING 
BRAKE & AMOTV 7 0  INCREASE V D  
AND REDUCE SCAR WEIGHT 

O SPACE ASSEMBLED PREFABRICATED 
COMPOSITE PANELS 

@ RIGID ,OR FABRIC REUSABLE TPS 

LARGE PLANFORM AREA REDUCES 
TEMPERATURES 

O NO IMPINGEMENT PROBLEM 

## COIVTROL WITH AERODYNAMIC SURFACES 
& 696s 

F i g u r e  18 
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Objectives of Follow-on Study 

0 DESIGN DEVELOPMENT OF SPACE ASSEMBLED LIFTING BRAKE CONCEPT 

0 FURTHER APPLICATION OF OPTIC GUIDANCE CONCEPT TO GN&C TRADES 

e AEROBRAKE CONCEPT 

e L IFTING BRAKE CONCEPT 

0 PROPULSION SYSTEM TRADES 

* SIZE AND NUMDER OF ENGINES OPTIMLJM FOR AOTVr 

* TECHNOLOGY LEVELS OPTIWIUM FOR LCC 

0 TECHNOLOGY DEVELOPMENT PLANNING 

ATMOSPHERIC DISPERSION TESTING 

e TPS . 
e AEROTHERMAL 

* AERODYNAMICS 

Figure 19 





MODERATE LIFT-TO-DRAG AEROASSIST 

Dwight E .  Florence 
General Electric Space Systems Division 

Grahme Fi scher 
Grumman Aerospace Corporation 

Numerous potential technology advances have been identified and evaluated tha t  
provide s ignif icant  mission enabling and mission enhancing features to  a wide 
variety of mid L / D  AOTVs. In th i s  paper, those advances associated with propulsion 
subsystems will be highlighted. 

INTRODUCTION 

Si gni f i  cant performance benefits can be real i zed via aerodynamic braking and/or 
aerodynamic maneuvering on return from higher a1 t i tude orb i t s  t o  low Earth o rb i t ,  
Reference 1-5. This approach substantially reduces the mission propellant require- 
ments by using the aerodynamic drag, D ,  to  brake the vehicle to  near c ircular  velo- 
c i ty  and the aerodynamic l i f t ,  L ,  to  null out accumulated errors as well as change 
the orbital  inclination to  tha t  required for  rendezous with the Space Shuttle 
Orbiter. A study has been completed where broad concept evaluations were performed 
and the technology requirements and sens i t iv i t i e s  for  aeroassisted OTV's over a 
range of vehicle hypersonic L/D from 0.75 to 1.5 were systematically identified and 
assessed. The aeroassisted OTV i s  capable of evolving from an i n i t i a l  delivery only 
system to  one eventual ly capable of supporting manned roundtri p missions to  geo- 
synchronous orbi t .  Concept screening has been conducted on numerous configurations 
spanning the L / D  = 0.75 to 1.5 range, and several with a t t rac t ive  features have been 
identified.  

In i t i a l  payload capability has been evaluated for  a baseline of deli very to  
G E O ,  s ix  hour polar, and Molniya (12 hours x 63.4") orbi ts  with return and recovery 
of the AOTV a t  L E O .  Evolutionary payload requirements that  have been assessed 
include a GEO servicing mission (6K up  and 2K return) and a manned GEO mission (14K 
roundtri p )  . 

AOTV Performance 

Previous studies,  References 3 and 4, have considered only missions from LEO to  
Geosynchronous orb i t  and return. In th i s  study, missions were defined t o  higher 
i ncl i nation orbi t s  , where an aeromaneuvering vehicle was expected to  become more 
a t t rac t ive  due to i t s  ab i l i t y  to  provide orbi ta l  plane change. 

Performance studies have been conducted for  return of mid L / D  vehicles from 
G E O ,  5 x GEO,  and 6-hour Polar c ircular  orbi ts .  Steering laws have been employed 
that  include constant deceleration cruise a t  the overshoot and undershoot bounds, 
and constant bank angle cruise. Orbital plane change obtained i s  summarized in 

I"-=-- 
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Figure 1 ,  where i t  i s  shown tha t  plane change capabi 1 i t y  increases with hypersonic 
L / D  and entry velocity (maximum for  the 5 x GEO return) for  a specif ic  steering 
law. The 90" bank angle provides the maximum plane change. 

The insensi t ivi ty  of an L/D = 1.5 AOTV t o  variations from the nominal in the 
atmosphere densi ty  or to  errors  i n  the apriori estimate of the drag coefficient have 
been evaluated by personnel from NASA JSC and are i l lus t ra ted  in Figure 2.  

Configuration Development 

Several classes of configurations ex is t  that  meet the hypersonic performance 
requirements . Thse include axi symmetri c and el  1 i p t i  cal cross section cones, bi - 
conics, cone cylinders and arbi t rary bodies. Generally, the sphere cones are too 
long to  meet the length constraint and package the required propellant tanks and 
pay1 oads . Arbitrary bodies are general ly  geometrical l y  more complex than necessary 
for  th i s  aeromaneuver vehicle and exhibit  poor propel 1 ant tank packaging efficiency. 

Biconic and cone cylinders were selected for  t h i s  study because they were the 
best compromise on LID and packaging efficiency; there i s  a large aerodynamic and 
design data base; the basic maneuvering concept has been f l i g h t  proven for  th i s  
class of vehicles. This concept was thoroughly evaluated for  the planetary aero- 
capture mission and presents a feasible ,  we1 1 characterized, solution. 

The aerodynamic configuration selected must: 1 ) meet the external dimensional 
constraints of the launch vehicle, and 2)  provide packaging room for  the propellant 
tanks and other subsystems so tha t  the launch configuration w i t h  tanks fu l l  meets 
the launch vehicle center-of-mass requirement and the entry configuration w i t h  tanks 
empty meets the center-of-mass requirement to  trim the vehicle a t  the desired angle 
of attack during the aeromaneuver. The desired angle of attack i s  obtained by 
placing the entry center-of-mass a t  the AOTV center-of-pressure location for  that  
angle-of-attack. The selected angle of attack for  the baseline vehicles will be 
that  for  which L / D  i s  a maximum, thus insuring maximum plane change capabili ty for  
the vehicle. 

The aerodynamic configurations of mid L / D  AOTV's evolved from review of an 
existing computational aerodynamic data base supplemented with additional calcula- 
t ions.  The i n i t i a l  data base consisted of existing flow f i e ld  calculations for  a f t  
frustum angles down to 4" and the AMOOS resul ts  for  frustum angles of 0 and l/ZO. 
This data base was supplemented w i t h  new HABP, Reference 8, calculations for  a 
frustum angle of 2". 

The ef fec t  of increased nose length or  increased vehicle length on increasing 
the vehicle hypersonic L / D  i s  i l l u s t r a t ed  in Figure 3. Note the large ef fec t  tha t  
increased nose length makes. 

For packaging or aerodynamic reasons, a fu l l  nose bend, cn, may not be desir-  
able. The effect  of lesser  nose bend on (L/D)rnax i s  also i l lus t ra ted  i n  Figure 3. 

Several major configuration classes are possible by employing different  staging 
techniques. Single stage vehicles were evaluated recently, References 1 ,  3 and 4, 
where the propellant tanks are enclosed within the AOTV and the en t i re  vehicle makes 
the round t r i p .  Stage and-a-half vehicles,AMOS, Reference 6 ,  9 ,  MOTV, Reference 7 ,  
have been evaluated and were shown to  offer  payload delivery and cost advantages 
over the single stage vehicles. Two-stage vehicles have been evaluated and shown to 
offer  payload delivery advantages. Specific configurations employing each of the 
above stagi ng techniques have been evaluated. 



For the single stage vehicles, propulsion stage packaging trends have been 
evaluated t o  determine vehicle center of mass poss ib i l i t ies  for  combinations o f  
total  vehicle length, Lv, and nose length, L n .  Two propulsion stages were used; 
one representing an extremely short stage, (u t i l i zes  torroidal oxygen t a n k )  arid one 
representing probably the longest stage possible (spherical tanks).  Using these 
resul t s ,  in combination with the parametric center of pressure locations, t h r e e  
configurations were defined, Figure 4, that  span the range of L / D  from 13,75 t o  1 ,,5 
for  further evaluation. 

MAJOR FACTORS FOR IMPROVING MID LID PAYLOAD DELIVERY PERFORMANCI! 

The performance capability of a mid L / D  AOTV can now be enhanced considerably 
by combining many of the effects  that  incrementally improve performance o f  the  AOTV 
into one vehicle. The improvements can be categorized into: 1)  those tlwt f a l l  w-l th- 
in current state-of-the-art ,  and 2 )  those that  resul t  from improvements i n  s t a t e - o f -  
the-ar t ,  and are summarized in Figure 5. 

Considering a l l  of these e f fec ts ,  a representative idea1 Geosynchronous 
delivery vehicle was defined for evaluation, Figure 6. 

PROPULSION SUBSYSTEM TECHNOLOGY ADVANCES 

As part of the Advanced OTV Propulsion System Program currently underway, 
improvements in specif ic  impulse for  LOX-H fueled engines are projected t o  reach ? 480 t o  490 seconds, References 10, 11 and 2 .  The potential improverne~?t i~ AOTV 
payload delivery capability i s  i l lus t ra ted  for G E O  and Polar delivery in Figure 7 .  
Note that  the payoff for  increased specific impulse i s  about 60-65 pounds o f  ~ a y l n a d  
for  each second or specific impulse improvement. 

The advantage of variable mixture ra t io  ( M R )  operation t o  maximize the specific 
impulse of a throttable engine was ident i f ied,  Reference 10. In addition, illcrease 
of the mixture r a t io  reduces the size of the hydrogen tank by one foot fc r  the  65K 
STS and 1.8 fee t  for the lOOK STS a t  only a small loss of payload d e l i v c ~ r j ~ c ~ p a b i l i t y  

The wide range of engine s ize and thrust 1 eve1 possi bil i  t i e s  have been iclenti - 
f ied ,  Reference 10. The packaging advantages and the shorter (hence l i ghterj 
vehicles that  resul t  from use of m u 1  t i p l e  small engines have been eval u d t e d ,  One to 
six engines, providing a total  thrust  of 15,000 lbs ,  and man-rating requirements have 
been considered. The resul ts  of th i s  AOTV-engine weight trade are summdrized i n  
Figure 8 where i t  i s  seen that  for  a representative Mid L / D  AOTV, s ix  engines res8i t 
i n  nearly a 5 foot shorter and 260 lbs l ighter  vehicle. 

Some of the AOTV configuration-engine location interactions that  were f o m d  a r e  
summarized in Figure 9. 

S E V E R A L  ATTRACTIVE MID L / D  AOTVs 

Examples of several configuration classes were evaluated including bclth single 
and mu1 tip1 e stage vehi cles , unmanned del i  very and manned vehi cl es . Exampl es of  
these configurations employing some growth technology are i l lus t ra ted  i n  Ficjures ?C 
and  11 and the i r  primary features enumerated. 

F l  ight performance and payload del ivery sens i t iv i t i e s  across the m-I d i l D  raricri.. 
f o r  a single stage AOTV are summarized in Figure 1 2 .  The incremental increase i r  
payload delivery capabili ty,  given a reduction in vehicle dry weight, or a n  incrzsse 
i n  vehicle LID i s  i  1 lustrated for vehicles a t  b o t h  ends of the mid L / D  range, The 



f t~crerrevta? loss of payload deli very capability i s  i l lus t ra ted  for  each degree of 
plane change generated propulsively in the i n i t i a l  mission o rb i t .  Note the large 
d i  fferences i n  the e f fec t  of incremental L / D  on payload delivery capabili ty,  W P/1./ 
A L J D ,  betweer! the G E O  and 6 hr po la r  delivery missions. 
-4 

ADVANCED TECHNOLOGY PAYOFFS 

A detailed review of the current state-of-the-art  in the various technology and 
su5systems areas was conducted to  serve as a baseline point of departure for t h i s  
s t , ~ c l j .  Technology advancement possi bi 1 i  t i e s  identified in numerous recent studies 
ol' O T V ,  4QTV, SDV, and STS were reviewed. These resul ts  are compared with our i n -  
hcuse d a t a  base and parameters selected tha t  represent improvements due to nominal 
es7ected growth resulting from normal funding of these technology areas. A number of 
t'riese imarovements resulting in from 10 t o  70% reduction of subsystem weight are 
sidi?,narized i r i  Figure 13. Other improvements include such items as increase of 
~ 3 x i m u m  operating temperature of the thermal protection system elements and increased 
con f idence i n the i~ypersoni c aerodynamic characteri s t i  cs . 

'iar-inus ?.ecl?nl'ques ex is t  for ranking the technology benefits. The method 
s;iected for th i s  study i s  as follows: given a subsystem weight reduction or other 
perfor-;?aj-lce improvement possi bil i ty ,  the e f fec t  on increased payload weight was 
d~ i;ernu ned a r a  t h i s  payload gain was converted t o  a customer cost benefit ,  given a 
r Je r "  c 3 l ?el i tery cost to G E O  of $8000 per I b .  The mid L / D  AOTV payload del i very 
s e n s i  t i v ?  t-ies of Figure 12 have been combined with the delivery cost and the sub- 
system w e j g h t  reduction poss ib i l i t ies  t o  generate the resul ts  summarized i n  Figure 14 
f o r  she 35 "t and OH-3 delivery vehicles. Note that  the 38 f t  single stage vehicle 
has very a ~ f f e r e n t  technology payoffs from the small OH-3 staged vehicle. 

P d d i  I;.; esnal technology advance benefits are summarized in Figure 15 for  b o t h  
vleili c i  es , Aerodynamic uncertainties due t o  viscous and rarefaction effects  wi 1 l 
?x i  s t  and  cou ld  amount t o  as much as +0 . I  of L/D. This uncertainty requi res a 
,rope' 1 a r t  contingency which in turn ';recreases the payload delivery capabi 1 i 
V Ir yh c vehicles have typically flown i n i t i a l l y  with a safety margin in the thermal 
7rsCecrior1 system o f  as much as 25%. This t ranslates  into a very large payload loss 

e r c  hence cost benefit i f  i t  i s  decreased or eliminated) for  the 38 f t  delivery 
is' i - r  : i c i e  - a much smaller e f fec t  for the OH-3 vehicle due to  i t s  much smaller s i ze ,  
117 the  Gh&C subsystem area, the ab i l i t y  t o  obtain aerodynamic plane change i s  tralas- 
' a t ea  i n t g  payload gain and hence customer cost benefit .  The value of an "optimum" 
j ~ ; d a . ~ r , r ?  s j s t ~ ~ m  that  has been selected because i t  i s  capable of obtaining the most 
~e~oc ly f i an i  c p'l ane change from a gjven vehicle configuration i s  i l lus t ra ted  for  one 
degree o r  incremental plane change. The value of an "adaptive" guidance system that  
":as t h e  capability of updating during the early portion of entry i s  i l lus t ra ted  for  
2ach aciclf-tional one degree of plane change tha t  can be generated. The ef fec t  of 
ercoun t e r i ~ g  t3 30% density shear (pocket) similar t o  t h a t  experienced by a recent 
ST5 f i iglat  has been demonstrated to  have no  e f fec t  on vehicle with L / D  = 1 , s  b u t  to 
!qa "9 a srra? l effect  on a vehicle with L / D  = 0 .6 .  

C O N C L U D I N G  REMARKS 

lb,e major conclusions of th i s  study include the following: 

Use a+ mid L / D  AOTV provides s ignif icant  aerodynamic plane change capa- 
b j i i t y  and  control authority over trajectory dispersions and off nominal 
a tvos~heres .  



s All mid L/D AOTV enabling technology i s  ready today. 

Substantial performance improvements and hence cost  benef i t  can be o b t a i n e d  
by developing enhancing technologies. 

Six f ixed ,  low th ru s t  (F 2000 t o  3000 1 b )  , advanced expander, LOX-hydrogel? 
engines operating a t  a MR>6.0 o f f e r  a t t r a c t i v e  packaging p o s s i b i l i t i e s .  

o Manned mission t o  GEO with delivery of one ton payload i s  possible with t h e  
65K STS, mid LID AOTV, an advanced cryofueled engine and 1 ightweight ASE 
(3000 I b s ) .  

o Delivery of very long payloads (45 f t )  i s  possible by use of very shor t  
AOTVs with drop tank. 
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AOTV PLANE CHANGE CAPABlLlTY 

STEERING LAW HAS SIGNIFICANT IMPACT MISSION HAS SIGNIFICANT IMPACT 
u 
w 30 

ON AERODYNAMIC PLANE CHANGE 
0 I I I -1 

LIFT TO DRAG RATIO, LID LIFT TO DRAG RATIO, LID 

FIGURE 1 

M I D  L I D  AOTV I S  R E L A T I V E L Y  I N S E N S I T I V E  TO ATMOSPHERIC DENSITY AND DRAG 
C O E F F I C I E N T  UNCERTAINTIES 

FIGURE 2 



EFFECT OF NOSE BEND ON MAXIMUM LID 

FRUSTUM CROSS SECTION = CIRCULAR - c C l R C U L A R  

ELLIPTICAL 
RN = 1 . 0  - 2 . 0  FT 

SYMBOL 

OPEN 

SOLID 

FIGURE 3 



AOTV CONFIGURATIONS SELECTED 
FOR FURTHER S E N S I T I V I T Y  
STUD1 ES 

MAJOR FACTORS FOR I M P R O V I N G  
M I D  L / D  PAYLOAD D E L I V E R Y  
PERFORMANCE 

F IGURE 4 

HlN STATE OF ART 
EDUCE AOTV DRY WEIGHT 

a SHORTEN VEHICLE 
D COLD SOAK TPS PRIOR TO ENTRY 

INCREASE LID 
Q LENGTHEN NOSE 

I c STEEPEN FRUSTUM CONE AMGI-E I nmC 1 
B V 3 C  f 

(BETTER XCp) iaACKAt;!NG i 
as DECREASE NOSE BEND ANGLE VOkeSFVIE : 
o DECREASE NOSE RADIUS 

(HEATING LIMITATIONS?) 1 1 
IMPROVEMENTS IN STATE OF ART 

REDUCE SIZE OF PROPULSION CCEWE 
o INCREASE ISp 
o INCREASE MR - REDUCES LH2 TANK SIZE 
e INCORPORATE MULTIPLE SMALL ENGINES 

REDUCE AOTV DRY WEIGHT 
I 

B) STRUCTURAL SHELL, FRAMES AND SUPPORT 

e AVIONICS 

I 
AND PROPULSION I 

F I G U R E  5 

A 38 FT GEO DELIVERY VEHICLE 

o F = 4 0  

PIL TO BE DELlVERED ,T R e  = 7 5 FT 

- -  J-- 
WPlL = 14200 LBS I 

I 

I 
I 

LID - 1.5 INV XCMILV = 0.52 

Wp - 4 5 K  MR - 7 

FIGURE 6 



INCREASED SPEC1 F I C  IMPULSE PROVIDES 
MAJOR AOTV PERFORMANCE PAYOFFS FOE 
BOTH GEO AND POLAR M I S S I O N S  

5 
440.0 460.0 480.8 

ISP - SECONDS 

FIGURE 7 



NUMBER OF ENGINES vs AOTV WEIGHT (MAN RATED) 

a REPRESENTATIVE LARGE AOTV (c.g.. H - I M )  
- 14.5' $ AT  AFT END 
- AEROSHELL (TPS + STRUCTURE) WEIGHT 2 80 LBIFT OF LENGTH 

e ADJUST PROPULSION SYSTEM TRADE FOR RETRACTABLE NOZZLES 

- ADD 2 10 LBIENG FOR NOZZLE EXTENSION 

INCORPORATE RESULTS OF ENGINEIVEHICLE LENGTH TRADE 
- 15" GIMBAL ANGLE FOR 1-5 ENGS - MAXIMIZE ENG RADIAL LOCATION WITHIN AOTV 
- WlTH ENGqPARALLEL TO VEHICLE k. NOZZLE EXIT PLANE 

DEFINES END OF AEROSHELL 

GIMBALED FIXED 

NUMBER OF ENGINES I 1  2 3 4 5 ] I  6 

A VEHICLE LENGTH (FT) 0 - 0.25 - 2.25 - 3.17 - 4.83 - 4.92 

A VEHICLE WEIGHT (LB)  0 -20 -180 -253 -387 -393 
A PROPULSION SYS WT (LEI  0 +14 + 1 + 93 +I85 +I34 
NOZZLE RETRACT ADJ (LEI  0 +24 - - + 40 + 50 + 3 3 - -  - 0 
\ = AOTV A WT (LEI  0 +18 -146 -120 -152 -259 

MIN AOTV WEIGHT 
WlTH SIX ENGINES PREFERRED 

FIGURE 8 

SOME BI-CONIC AFT END & ENGINE INTERACTIONS 

e CURRENT AOTV GROUNDRULE: "ALL REUSEABLE AOTV COMPONENTS MUST 
BE PROTECTED BY AEROSHELL" 

FIXED NOZZLE, FIXED ENGINE 

r REQUIRES MULTIPLE ENGINES 3 " L O W  THRUST" PER ENGINES j SHORT ENGINES 

SMALL ENGINES FIT INTO "CORNERS & HOLES" 
- SHORT AOTVs RESULT 

FIXED NOZZLE, GIMBALED ENG RETRACTABLE NOZZLE. GIMBALEDENG 

r APPEARS TO BE 
UNACCEPTABLE 

' PROBABLE 
DAMAGE r SHORTER VEHICLES 

0 NO PLUME IMPINGEMENT 
DAMAGE 

FIGURE 9 



SMALL MANNED AOTV " H - 1 M '  

a) ORBITAL OPERATIONS 

MISSION EQUIP e FIXED ENGlNE 
@ ISp = 479 SEC AT 

b) ATMOSPHEW IC ENTRY 

FIGURE 10 



PERFORMANCE COMPARISON OF OH-3 & OH-I 

@ FOUR ADVANCED EXPANDER 
ENGINES 

r = 400: 1 
ISP = 475 SEC 

TOTAL THRUST = 12.000 
r EFFICIENT FOR OFFSET C.G 
r POSSIBLE ENGINE OUT CAPABILITY 
o 4000 LB D R Y  WEIGHT 
@ PAYLOAD DELIVERY TO CEO 

TRANSFER ORBIT WITH 11,930 LB 
O F  PROP: WpAy - 11.400 LB 

9rl-1 
o TWO ADVANCED EXPANDER 

ENGINES 
c = 1000: 1 
ISP = 480 SEC 

e TOTAL THRUST = 6000 it4 
4000 LB DRY WEIGHT 

r PAYLOAD DELIVERY 10 GEO 
TRANSFER ORBIT W I l  ti 
11.930 LB OF PROPELLANT. 
WPAY = 11,400 LB 

F I G U R E  11 

SUMMARY OF PAYLOAD DELIVERY 
SENSITIVITIES FOR A SINGLE STAGE 

AOTV - 65K ST% 

F I G U R E  1 2  

8 1 



TECHNOLOGY ADVANCEMENT P O T E N T I A L  

AOTV SUBSYSTEM ELEMENT 

STRUCTURE ( S H E L L ,  FRAMES, SUPPORTS 
FLAPS) 

THERMAL PRO'TECTION SYSTEM 

-rRANSPIRAT113N COOLED NOSE 

ELECTRTGAL POWER SUPPLY 

IJEh CRVOFUELED ENGINE 

FIGURE 1 3  

EXPECTED IMPROVEMENT 

10 TO 3 0 %  WEIGHT REDUCTION 

UP TO 69% WEIGHT REDUCTION 

7" PLANE CHANGE INCREASE FOR 5 X GEO 
RETURN 

50 TO 7 0 %  WEIGHT REDUCTION 

2 0  TO 3 8 %  WEIGHT REDUCTION 

I s p  UP TO 4 8 0 S E C  



EFFECT OF TECHNOLOGY ADVANCES ON CUSTOMER COST BENEFIT 

38 FT DELIVERY VEHlCLE 
GROUND BASED 

W Z W 
a O Z- % z 2 

t z  . (3 z " CE: P z p $ 1 ~  

3 2 %  ( 3  Y!g "- ~ " 5  
a $5 3 u  w + a d B  
1;; Eo Z - I  a 0  8 :  nu -I 

u a  a 0  B Z  5 2 
t O 

FIGURE 14 

38 FT DELIVERY VEHICLE 
69 
I 

OH 3 DELIVERY VEHICLE 7 GROhIND BASED 1 SO K 5TS 
, $ 800~31t 8 

12 I 

I 

C- 
v Lbl 
u 
u 
LU 

FIGURE 15 

83 



OTV PROPULSION SYSTEM CHALLENGES 
GOALS 

VACUUM SPECIFIC IMPULSE Ibf secllbm 520 
VACUUM THROTTLE RATIO 30 1 

NET POSITIVE SUCTION HEAD, Ibf f t l lbm 0 
WEIGHT, Ibm 360 
LENGTH (STOWED), INCH 40 
RELIABILITY 1 0  

SERVICE LIFE 
BETWEEN OVERHAULS, CYCLESIhr 500120 

SERVICE FREE, CYCLESIhr 10014 

REQUIREMENTS 
PROPELLANTS HYDROGENIOXYGEN 

TOTAL VACUUM THRUST, Ibf 10,000 - 25, 000 

ENGINE MIXTURE RATIO 6 t 1  

FIGURE 16 



BENEFITS OF H I G H  AERODYNAMIC EFFICIENCY TO 
ORBITAL TRANSFER VEHICLES* 

D.  G. Andrews 
The Boeing Company 

R .  B. N o r r i s  
U.S. A i r  Force Wr igh t  

Ae ronau t i ca l  Labo ra to r i es  

S. W.  P a r i s  
The Boeing Company 

An a n a l y s i s  o f  t h e  b e n e f i t s  and cos t s  o f  h i g h  aerodynamic e f f i c i e n c y  on 
ae roass i s t ed  o r b i t a l  t r a n s f e r  v e h i c l e s  (AOTV) i s  presented.  These r e s u l t s  
show t h a t  a  h i g h  l i f t - t o - d r a g  (L/D) AOTV can ach ieve s i g n i f i c a n t  v e l o c i t y  
sav ings r e l a t i v e  t o  low L/D aerobraked OTV's when t r a v e l i n g  round t r i p  between 
low Ea r t h  o r b i t s  (LEO) and a l t e r n a t e  o r b i t s  as h i g h  as geosynchronous E a r t h  
o r b i t  (GEO). T r a j e c t o r y  a n a l y s i s  i s  used t o  show t h e  impact  o f  thermal  
p r o t e c t i o n  system techno logy  and t h e  importance o f  l i f t  l o a d i n g  c o e f f i c i e n t  an 
v e h i c l e  performance. The p o s s i b l e  improvements i n  AOTV subsystem techno log ies  
a r e  assessed and t h e i r  impact  on v e h i c l e  i n e r t  we igh t  and performance n o t e d .  
F i n a l l y ,  t h e  performance o f  h i g h  L/D AOTV concepts i s  compared w i t h  t h e  
performances o f  low L/D ae roass i s t ed  and a l l - p r o p u l s i v e  OTV concepts t o  a s s e s s  
t h e  b e n e f i t s  o f  aerodynamic e f f i c i e n c y  on t h i s  c l a s s  o f  v e h i c l e .  

"Work supported by U.S. A i r  Force Wr igh t  Ae ronau t i ca l  Labo ra to r i es  and Boeing 
Aerospace Company. 
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RESULTS 
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Figure 15. Spacs-Based Sofije Mission 
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OTV PROPULSlUN lECHNOLOGY PROGRAMMATIC OVERVIEW 

Larry P. Cooper 
NASA Lewis Research Center 

To meet the propulsion needs for future Orbit Transfer Vehicles ( C T V ) ,  hlWSA has 
established the Advanced OTV Propulsion Technology Program. An overview of this 
program is presented. 

For the 1990's and beyond it is envisioned that an advanced OTV w i l l  be an In- 
tegral part of the National Space Transportation System (fig. I ) ,  carrylng men and 
cargo between low Earth orbit and geosynchronous orbit as well as performing  plane- 
tary transfers and delivering large acceleration limited space structures to h l g h  
Earth orbits. This OTV will be driven by the need to achieve significant reductions 
in the operational costs for orbit transfer. 

To support this scenario, the Advanced OTV Propulsion Technology Program was 
initiated in 1981. Its objective (fig. 2) is to establish an advanced propulsion 
technology base for an OTV for the mid 1990's. The program supports t e c h n o l o g y  For 
three unique engine concepts. Efforts are being conducted in generic technologies 
which benefit all three concepts as well as specific technology which b e n e f i t s  only 
one of the concepts. 

Figure 3 shows the program goals and requirements. These goals have been es- 
tablished as technology challenges to generate options and tradeoffs although t h e y  
may not be achievable singularly or concurrently. 

NASA Lewis Researach Center has responsibility (fig. 4) for the overal.1 accom- 
plishment of the program's objective, under the cognizance of the Transportation 
Systems Office of the Office of Aeronautics and Space Technology and w l t h  assistance 
from other NASA Centers. An Advisory Committee has been established to provide tech- 
nical support to the Program Managers at Lewis Research Center and Marshall Space 
Flight Center. The overall management structure is shown in figure 5. 

The program elements (fig. 6) include concept and technology definSt3on to 
identify propulsion innovations and subcomponent research to explore and v a l i d a t e  
their potential benefits. Approximately one-half of the program resources support 
the three engine manufacturers and the remainder supports university g r a n t s ,  
in-house work at NASA Centers, and generic research with industry. 

An expansion of the program is being proposed for 1986 (fig. 7) by NASA CAST t o  
enable validation of component and systems level engine capabilities In a realist-c 
operating environment. Support for this research engine proposal has been estab- 
lished through a series of reviews (fig. 8) with government and industry. The total 
program (fig. 9) will extend into 1992 with approximately one-quarter of  the a d d ? -  
tional resources supporting component evaluation at NASA Centers and t h e  remainder 
being expended by the three engine manufacturers for hardware, software, and testing 
of the components and integrated research engines. This expansion of t h e  program to 
include research engines is designed to be a precursor to a development program 
(fig. 10) and will allow the latest technology to be incorporated In the advanced 
engine while providing a low risk, minjmum cost development program. 



INTEGRAEED SPACE TRANSPORTAUION 
1990's SCENARIO 

/ 4 *STATION OPERATIONS 
*SERVICE OPERATiONS ' aL4UNCH AND RECOVERY OPERATIONS i 

F i g u r e  1 

ADVANCED ORBITAL TRANSFER PROPULSlON 
OBJECTIVE 

TO ESWBLiSH THE TECHNOLOGY BASE FOR A HIGHLY VERSATILE, 
SPACE BASABLE, REUSABLE, MAN RATABLE ENGINE FOR ORBITAL 

TRANSFER VEHICLES FOR MID-1 990's 80C 

APPROACH 
MtJLTI-ELEMENT PROGRAMS SUPPORTING TECHNOLOGllES FOR UNlQUE 

OTV ENGBNE CONCEPTS AT AEWOJEB, PRATT & WMITNEV, 
AND ROCKETDYNE 

- CONCEPT SPEClFlC PROGRAMS 
- GENERIC RESEARCH PROGRAMS 

PR;OPULSlOMdVEHBCLE ANALYSIS *TURBOMACHINERY NOZZLES 
THRUST CHAMBERS *HEALTH MONITORlNG *CONTROLS 

Figure  2 



OTV PROPULSION ! -- -. - 

WEIGHT, Ibm 360 
LENGTH (STOWED), INCH 40  
RELIABILITY 1.0 
SERVICE LIFE 

BETWEEN OVERHAULS, CYCLESlhr 500120 

SERVICE FREE, CYCLES/hr 

REQUIREMENTS 
PROPELLANTS HYDROGEN /OXYGEN 
TOTAL VACUUM THRUST, Ibf 10,000 - 25, 000 
ENGINE MIXTURE RATIO 6 k l  co e f i s r a  

Figure 3 

MANAGEMENT 
@ NASA OAST - TRANSPORTATION SYSTEMS 

OFFICE 

@ LeRC LEAD CENTER 

@ LeRC AND MSFC ARE FIEU) CENTERS 
RESPONSIBLE FOR PROGRAM TASKS 

@ ADVISORY COMMlTEE FROM LeRC, 
LaRC, MSFC, & AFRPL 

Figure 4 



@ APPROVE LONG RANGE & 
ANNUAL PLANS 

REVIEW PROGRESS 
@ AUTHORIZE ANNUAL FUNDIN DEVELOP LONG 

OTV PWBBPULSBON TECHNOLOGY 
PROGRAM MANA 

&eR@ OIV PROBULSlON TECHNOLOGY MSIFG 

SPACE TECHNOLOGY, 
ADVISORY COMMmEE 

WAPRMAN, LcRG SGIWCE 
MATERIALS 8 

keB@ MSK MSR 
C 

STRISGTUWES, 
keBC M S R  AFWPL MGINEERIWG 

AEROWAhmGS DlR. DlRECTORATE 

REVIEW OF OTb' & RELATED 
s CONDUCTIDIRECT PROGRAMS @ CONDUCTIOIRECT 
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RECOMFdEND TASK PRiORlTY C P ~ ~ ~  

Figu re  5 

PROGRAM ELEMENTS 
FISCAL YEAR 

81 a2 83 84  85 86 07 88 89 90 91 92 
i r l i l l  I I I I I l 

SUBCOMPONENT 
TECHNOLOGIES 

PROGRAM RESOURCES 46.7 
$ MIUlON TOTAL 

l i l l l l l l l l l l r  
81 82 83 84 85 86 87 88 89 90 91 92 

FISCAL YEARS a-c+im 

Figure  6 



RESEARCH ENGINE lNlTlATlVE 
OBJECTIVE 

TO VAUDATE COMPONENT AND SYSTEMS LEVEL PERFORMANCE/ 

CAPABIUN FOR A HIGHLY VERSATiE On/ ENGINE WITH IOC IN 

THE MID 1990's 

APPROACH 
EVALUATE WITH EACH ENGINE MANUFACTURER SUBCOMPONENTS. 

COMPONENTS. AND SYSTEM LEVEL INTERACTIONS FOR RESPECTIVE 

ENGINE CONCEPTS 

PAYOFF 
ASSESSMENT OF INTEGRATED ENGINE CONCEPTS IN REAUSTIC 

OPERATING ENVIRONMENT 

C P Y l ( B  

Figure 7 

BACKGROUND & REVIEWS 
JAN 1983 JULY 1983 JAN1984 

l l i l l i 1 1 1 l 1 /  i l  
INITIATIVE FORMULATION M 

SSTAC CHEMICAL PROPULSION 

AIR FORCE SPACE TECHNOLOGY CENTER 

OFFICE OF SPACE FLIGHT 

DEPUTY ADMINISTRATOR 

INITIATIVE INDUSTRYJGOVERNMENT TEAM 
0 MARTIN MARlRTA * AEROJFT 
* ROCKWELL * PRATT & WHmEY 
* WEffi 0 ROCKETDYNE 
* McDONNaL DWGLAS a LeRC 
* GRUMMAN a MSIF  
* GENERAL DYMAMKS 

OAST MANAGEMENT COUNCIL 

Figure 8 



PROGRAM ELEMENTS 
FISCAL YEAR RESOURCES 

81 82 83 84 85 86 37 86 89 90 9'1 9Z$WJ'U-'0N 
I I l l l l l ? I T - T ?  

ENGINE CONCEPT P1 
TECHNOLOGY DEFINITION 

SUBCOMPONEIVT RESEARCH 

TOTAL W R A M  
w ~ s o m q  ~aeuo~ 

l l l i l !  i i l l l l  
81 82 33 84 85 86 87 88 89 90 91 92 

FISCAL YEAR C O * i W  

Figure 9 

*SPACE BASABLE 
* AERO ASSIST 

LOW G TRANSFERS 

F igu re  10 
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DRIVES AND BENEFITS OVERVIEW 

S. D .  Mc In t y re  
NASA Marsha l l  Space F l i g h t  Center 

The p r e s e n t a t i o n  covers t h e  ma jo r  technology i ssues  f o r  an advanced OTV 
engine t o  be used i n  c o n j u n c t i o n  w i t h  a  space based, reusab le  o r b i t  t r a n s f e r  
v e h i c l e .  A b r i e f  summary o f  t h e  r e s u l t s  o f  t h e  space s t a t i o n  s t ud ies  
conducted i n  1983 as t h e y  r e l a t e  t o  t h e  OTV i s  g i ven  as w e l l  as a  b r i e f  r e v i e w  
o f  ground r u l e s  and g u i d e l i n e s  f o r  a reusab le  OTV v e h i c l e  s tudy  which i s  
c u r r e n t l y  be ing  i n i t i a t e d  a t  MSFC. The technology d r i v e s  a r e  presented and 
r e l a t e d  t o  b e n e f i t  ca tego r i es  i . e . ,  m i ss i on  v e r s a t i l i t y ,  i nc reased  reliability 
o r  reduced c o s t .  The techno logy  d r i v e r s  and t h e  assoc ia ted  b e n e f i t s  a r e  t h e n  
covered i n  d e t a i l  w i t h  regard  t o  r e l a t i v e  s i g n i f i c a n c e  and impact  on t h e  
on-going OTV engine technology program. The conc lud ing  summary recommends 
t h a t  based on t h e  maintenance o p p o r t u n i t y  a f f o r d e d  by t h e  Space S t a t i o n ,  t h e  
broad range o f  m i ss i on  requi rements  and t h e  l ong  t e rm  p o t e n t i a l  c o s t  b e n e f i t s  
a new engine i s  needed f o r  t h e  space based reusab le  OTV. 



O J V  PROPULSION ISSUES 
DRIVERS €4 BENEFITS 

d) I N  THE MID  1990's THE U. S. W lLL  NEED A NEW SPACE BASED OTV WHICH WlLL  BE PART 
OF A N  INTEGRATED SPACE TRANSPORTATION SYSTEM CONSlSTlNG OF: 

(B SHllTTL E ORBITER ISTS) (EXISTING) 

.SPACE STATION (SSI (1990) 

OSPACE BASED ORBIT TRANSFER VEHICLE (OTV) (1995) 

@ORBITAL MANEUVERING VEHICLE (OMV) (1990) 

QOTV VEHICLE STUDIES ARE BEING INITIATED NOW A T  MSFC TO DEFINE REQUIREMENTS 
AND CONCEPTS. A SlJMMARY OF GROUND RULES AND GUIDELINES FOR THESE STUDIES 
ARE AS FOLL.OWS: 

@INVESTIGATE USE OF SYSTEMSISUBSYSTEMS FROM EXISTING AND PLANNED 
VEHICLES 

@ A L L  CONFIGURATIONS SHALL EVOLVE TO BECOME: (OR BE THAT WAY FROM OUTSET) 

@REUSABLE 

*SPACE-BASED 

@INCORPORATE AEAO ASSIST (OR ALTERNATE APPROACHES) 

OMAN RATABLE 

eCRYOGENlC (OR ALTERNATE APPROACHES) 

IBSUFFICIENT DETAIL TO DETERMINE COST AND VIABIL ITY OF EVOLUTIONARY APPROACH 

@GROUND BASED CONCEPTS SHALL INCLUDE OPERATION I N  CONJUNCTION WITH THE 
SPACE STATION 

Figure 1 

INTEGRATED SPACE TRANSPORTATION 
1990's SCENARIO 

LEO - 

@SERVICE OPERATIONS 
@ IPaUMCfi AND RECOVERY OPERATIONS 

Figure 2 
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F i g u r e  3 

SPACE STATION ECONOMIC Bll3NEI;I'TS 
(1984 $) 

Total economic benefit: $1.685 billion 

F i g u r e  4 
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O T V  PROPULSION ISSUES 
DRIVERS & BENEFITS 

TECHNOLOGY DRIVERS AND BENEFITS 

BENEFITS 

TECHNOLOGY DRIVER 

SPACE BASED 

M A N  RATED 

THRUST LEVEL 

AERO ASSIST COMPATIBLE 

PERFORMANCE 

REUSABILITYILIFE 

MISSION INCREASED REDUCED 
VERSATILITY RELIABILITY COST 

F i g u r e  5 

O T V  PROPULSION ISSUES 
DRIVERS & BENEFlTS 

SPACE BASING BENEFITS FOR OTV MISSIONS 

@SPACE STATION SERVESAS A HOLDING AREA FOR: 

@PROPELLANTS @ OTV SYSTEMS B PAY LOADS 

THESE ITEMS CAN BE LAUNCHED. STORED AND ASSEMBLED I N  MOST COST 
EFFECTIVE WAY 

@POTENTIAL ECONOMIC BENEFIT FOR OTV MISSIONS IS ESTIMATED TO BE $56 Tt iRlJ CY2000 

@SPACE STATION CREATES OR ENHANCES OPPORTUNITY FOR: 

@ LOW COST DEL.IVERY OF OTV PROPELLANT TOSS 

@MULTIPLE PAYLOADS ON OTV 

@ MISSION VERSATILITY WITH MODlJLAR OTV SYSTEMS 

IMPACT OF SPACE BASING ON EXISTING OTV PROPULSION TECHNOLOGY DRIVERS 

@PERFORMANCE - REDUCED PROPELLANT DELIVERY COST 

O LIFE - SERVICE A N D  MAINTENANCE OPTIONS CREATED 

@SIZE -- F INAL  ASSEMBLY A T  SPACE STATION 

NEW TECHNOLOGY DRIVERS INTRODLJCED 

&MODULAR DESIGN - ON-ORBIT ASSEMBLY 

@HEALTH MONITORING, DIAGNOSTICS AND IN-FLIGHT CHECKOUT 

F i g u r e  6 



PROPEI,LANT DELIVEIt'K S'6'SrFEM CONCEPTS 

Honeybee scavenging 

Dockinglpropellant transfer port 

Performance 
@ Propellant delivered to station per mission - 

1 1,300 pour~ds 

@ Propellant delivered to station per year - 
230,000 to 270,000 pounds 

@ Propellant delivery cost - 
$250/pound 

Figure 7 

ROTV PROPELLANT REQUIREMENT 
CV 1990 - 2000 

SINGLE-STAGE 
3,084,000 

- SINGLE PAYLOAD DEPLOYED 1 
------ MULTIPLE PAYLOAD DEPLOYED 

EXCLUDES DOD PAY LOADS 

AERO-BRAKE 

1.480.000 
TWO-STAG E 

Figure 8 
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STS/SPACE BASEABLE PACKAGING CONCEPTS 

CONVENTIONAL PACKAGING 
ADVANCED PACKAGING CONCEPTS 

OPEN PACKAGING FOR MODULAR PACKAGING 
EASE OF MAINTENANCE PULL OUTIPLUG I N  MAINTENANCE 

Figure 9 

DlAGN0S"hlCS FOR MAPNTAINABILITY APPROACH 

ACHIEVED BY IJSING A BETWEEN.FLIGHT AND/OR IN-FLIGHT CONDITION MONITORING 
SYSTEM CONSISTING OF STATE OF THE-ART AND/OR NOVEL AUTOMATED DETECTION 
7tCHNOLOGIES AND TAILORED D A T A  PROCESSING AND COMPUTERS 

BElU'EEN F l  ICiHT 
DL If(. I O N S  -- - 

G O .  NO - GO 
COMMANDS 

Figure 10 



OTV PROPULSION ISSUES 
DRIVERS & BENEFITS 

M A N  RATABLE OTV BENEFITS 

E N A B L E S  COMPLEX SATELLITE SERVICING TASKS 

@ENHANCES MISSION VERSATILITY AND RELIABIL ITY 

C O U L D  SAVE REPLACEMENT OF A COMPLEX PAYLOAD 

M A N  RATABLE OTV PROPULSION TECHNOLOGY DRIVERS 

O M A N  RATIfUG MEANS REDUNDANCY 
POINT FAILURES 

OR THE ELIMINATION OF A L L  SINGLE 

@LARGER MARGINS OF SAFETY ON STRUCTURAL COMPONENTS 

@CONCENSUS IS M A N  RATED OTV WOULD HAVE 2 ENGINES 

@ M A N  RATING THEN LEADS TC ENGINE THRUST LEVEL ISSUE 

@ TOTAL THRUST FOR OTV ESTIMATED TO 10  - 20 K LB. 

S I N G L E  ENGINE THRUST ON 2 ENGINE VEHICLE IS THEN 5 - 10 K LB. 

Figure  11 

OTV PROPULSION lSSUES 
DRIVERS & BENEFITS 

THRUST LEVEL BENEFITS 

@MISSION VERSATILITY WHICH INCLUDES LOW Q AND MANNED MISSIONS 

C O N T I N U O U S  LOW THRUST THROTTLING TO MAINTAIN CONSTANT TMI  RATIO 
ON LARGE DEPLOYED STRUCTURE PAYLOADS 

B) SELECTION OF A PROPULSIQNIENGINE SYSTEM WHICH BEST ACCOMMODATES THE 
RANGE OF KNOWN OR ANTICIPATED MISSION REQUIREMENTS 

THRUST LEVEL RELATED OTV PROPULSION TECHNOLOGY DRIVERS 

THE SMALL L ~ ~ / L o ~  PUMP FED ENGINE (5 - IOK) IS ITSELF APPROACHING 
A NEW TECHNOLOGY AREA 

D E S I G N  A N 0  MANUFACTURING TECHNIQUES FOR SMALL DIAMETER 
HIGH SPEED PUMP COMPONENTS IS A NEW TECHNOLOGY AREA 

B O U N D A R Y  LAYER EFFECTS ON HEAT TRANSFER AND PERFORMANCE 
BECOME MORE SIGNIFICANT AS THE SIZE OF ENGINE IS REDUCED 

(1) SPACE BASING AND MODULAR ENGINE DESIGN ENHANCES OPPORTUNITY TO 
USE "KITS" TO ACHIEVE A LOW THRUST ENGINE CONFIGURATION, i.0.. PUMPS. 
INJECTORS, TtIRUST CHAMBER OR NOZZLES DESIGNED FOR LOW THRUST OPERATION 
AND MAXIMUM PERFORMANCE. 

F i g u r e  1 2  



TECHNOLOGY SCALING 

GOAl- -- 
PERFORMANCE 

SYSTEM CONTROL 

MAINTAINABILITY 

SYSTEM DESIGN 

LIFE 

EASE OF 
ACHIEVEMENT 

MORE DIFFICULT AT 
LOWER THRUST 

MORE DIFFICULT AT 
LOWER THRUST 

MORE DIFFICULT AT 
LOWER THRUST 

MORE DlFFlCULT AT 
LOWER THRUST 

MORE DIFFICULT AT 
LOWER THRUST 

MORE DIFFICULT AT 
LOWER THRUST 

MORE DlFFlCULT AT 
LOWER THRUST 

IMPACTS 

e LOW PUMP AND TURBINE EFF. 
e HIGH COOLANT JACKET A 8  
c LOWER TURBINE ADMISSION 

* LOWER FLOWRATES 
0 GREATER INSTRUMENT PRECISION 

REQ. 

0 HIGHER MASS PEW UNlT FLOWRATE 
e LARGER SURFACE AREA PER 

UNlT FLOW 

e LESS METAL TO CUT 
TIGHTER TOLERANCES 

e TURBINE, PUMP, AND T I C  FAB 
LIMITS 

c SMALLER PASSAGES 
e MORE DIFFICULT lNSPECTION 
e DIAGNOSTIC SENSORS NOT 

SCALEABLE 
SMALLER TOOLING 

e BETTER MATERIALS REQUIRED 

s I3IGHER L!iP FOR EQUAL LIFE 
e HIGHER SURFACE TEMPERATURES 

Figure 13  

OTV PROPULSION ISSUES 
DRIVERS & BENEFITS 

AERO ASSIST BENEFITS 

@REDUCED PROPELLANT REQUIREMENT BY USING ATMOSPHERE AS BRAKE 

em0 STAGE OTV IS EQUALLY EFFECTIVE FOR DELIVERY ONLY MISSIONS 

Q) AERO ASSIST MOST EFFECTIVE FOR DELIVERY A N D  RETURN MISSIONS. 
i.0.. MANNED MISSIONS OR PAYLOAD SERVICING A T  SPACE STATION 

AERO ASSIST RELATED OTV PROPULSIOh; TECHNOLOGY DRIVERS 

OMEDIUM TO HIGH L I D  CONCEPTS HAVE STRONG PREFERENCE FOR SMALL ENGINES 
WHICH CAN BE CONTAINED WITHIN THE VEHICLE PROFILE. 

Q) LOW L I D  BALLUTE CONCEPT REQUIRES THE ENGINE TO PROVIDE A GAS LAVER THERMAL 
BARRIER OVER THE INFLATED BALLUTE MATERIAL. 

@LOW L I D  RIGID SHIELD CONCEPT IS SENSITIVE TO ENGINE LENGTH SINCE DEPL OVMENT 
OVER THE ENGINE IS REQUIRED FOR THERMAL PROTECTION. 

Figure 1 4  



OTV PROPlJLSDORl ISSUES 
DRIVERS & BENEFITS 

PERFORMANCE BENEFITS 

O REDUCED PROPELLANT REQUIREMENT AND PAYLOAD DELIVERY COST 

O ADVANCED CONCEPTS ARE PREDICTED TO DELIVER - 480 SEC ISP OR A 40 SEC. 
INCREASE OVER RL-10-.3A REF. ENGINE (440 SEC) 

O INCREASED PERFORMANCE (440 - 480 SEC) REPRESENTS 20% REDUCTION I N  
PROPELLANT REQUIRED OR 20% INCREASE I N  PAYLOAD 

O THE OVERALL SIGNIFICANCE OF  THIS fMPROVED PERFORMANCE IS A FUNCTION OF: 

@ PROPELLAlriT DELIVEAV AND STORAGE COST AT  LEO OR SS 

@ USE OF AERO ASSIST OW STAGING CONCEPTS 

PERFORMANCE RELATED OTV PROPllLSION TECHNOLOGY DRIVERS 

@ HIGHER CHAMBER PRESSUWE AND PUMP SPEEDS 

E N H A N C E D  HEAT TRANSFER TO PROVIDE MORE POWER TO PUMPS 

H I G H  AREA RATIO NOZZLES WHICH, DEPENDING ON ENGINE SIZE, MUST BE SEGMENTED 
I F  ENGINE LENGTH I S  CONSTRAINED. 

Figure  '15 

EFFECT OH SPEClFlC IMPULSE ON ON 
PROPELMNT REQU B REMENTS 

PMFIED SORTIE MDSSiOH - 

Figure  1 6  
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ADVANCED ENGlNE PROViDES PERFORMANCE FhEX lB lL lTY  

485 - 

DUE TO NOZ 
EXTENSION 

460 - 

446 -- 

-- - - -- 

RL--10--3A RL- -  10 --IIB ADVANCED 
ENGINE 

Figure 1 7  

O I V  PROPULSION ISSUES 
DRIVERS €4 BENEFPTS 

REUSABILITY AND EXTENDED LIFE BENEFITS 

BD REDUCED OPERATING COST 

LIFE RELATED OTV PROPULSION TECHNOLOGY DRIVERS 

@IMPROVED BEARING, SEAL AND GEAR MATERIALS AFdD DESIGNS 

@IMPROVED THRUST CHAMBER MATERIALS AND DESIGNS 

8 IMPROVED NOZZLE MATERIALS AND DESIGNS 

@NEW CONTROL SYSTEMS, HEALTH MONITORING AND DIAGNOSTIC SYSTEMS 
TO CONTINUOUSLY MONITOR ENGINE STATUS OVER THE LIFE OF ENGINE 

OTV PROPULSION TECHNOLOGY PROGRAM P E R S P E C T S  

@ THE 1995 SPACE BASED OTV WlLL  NEED A NEW HYDROGENIOXYGEN FUELED ENGINE 

63 PROVIDES FOR BROAD RANGE OF MlSSIONS FROM LOW g TO MANNED 
FOR NEXT  20 - 40 YEARS 

@ W lLL  TAKE F U L L  ADVANTAGE OF SERVICING OPTIONS AFFORDED BY THE 
SPACE STATION 

@ PROVIDES IMPROVED RELIABIL ITY WITH INTEGRATED CONTROL AND 
HEALTH MONITORING SYSTEMS 

-@ EXTENDED LIFE A N D  INCREASED PERFORMANCE WlLL  PROVIDE A LONG 
TERM COST BENEFIT 

Figure 18 



AEROJET A D V A N C E D  E N G I N E  CONCEPT 

L. Schoenman 
A e r o j e t  TechSystems Company 

The f u t u r e  OTV requ i rements  d e f i n e d  i n  f i g u r e  1 d i c t a t e  t h e  need f o r  a h i g h l y  
v e r s a t i l e ,  h i g h l y  r e l i a b l e ,  r e u s a b l e  p r o p u l s i o n  module. A e r o j e t ' s  eng ine des lgn  
approach ( f i g .  2 )  w i l l  p r o v i d e  a  t o t a l  t h r u s t  c a p a b i l i t y  o f  500 t o  18 000 I b F ,  u s i n g  
one t o  s i x  c o n t i n u o u s l y  t h r o t t l e a b l e  eng ines.  The s e l e c t i o n  o f  a  nomina l  t h r u s t  
l e v e l  o f  3000 l b F  b e s t  f u l f i l l s  t h e  o v e r a l l  OTV requ i rements  w i t h  a  s i n g l e  p r o p u l s + o ~ a  
system. 

I n  o r d e r  t o  a t t a i n  maximum o p e r a t i o n a l  economy, space-basing w i l l  be essential. 
T h i s  r e q u i r e s  a  reausab le ,  ma in tenance- f ree  eng ine.  The desSgn f e a t u r e s  o f  t h i s  
space-based eng ine  a r e  d e f i n e d  i n  f i g u r e  3. 

A new eng lne  c y c l e  and i t s  advantages,  shown i n  f i g u r e  4, a l l o w  a71 t h e  main- 
tenance goa ls  o f  f i g u r e  3  t o  be a t t a i n e d .  Rubbing c o n t a c t  and i n t e r p r l o g e l l a n t  s e a l s  
and purges,  e t c . ,  a r e  e l i m i n a t e d  when GO2 i s  used t o  d r i v e  t h e  LO2 pump, as shown 
i n  f i g u r e  5. The TPA d e s i g n  shown has o n l y  one moving p a r t .  

The use o f  b o t h  GH2 and GO2 t o  d r i v e  t h e  t u r b i n e s  lowers  t h e  t u r b i n e  t empe r -  
a t u r e s  t o  t h e  va lues shown i n  f i g u r e  6. I n  a d d i t i o n ,  l ower  GH2 temperatures  and 
p ressures  a l l o w  improved chamber c o o l i n g  and l o n g e r  l i f e .  

The use of  GO2 as a  t u r b i n e  d r l v e  f l u i d ,  even a t  t h e  low  tempera tu re  of 400" F ,  
i s  a  concern which i s  b e i n g  addressed th rough  e x t e n s i v e  m a t e r i a l s  t e s t i n g .  F r i c t i o n  
r u b b i n g  and aluminum p a r t i c l e  impac t  t e s t  r e s u l t s  ( f i g .  7 )  i n d i c a t e  t h a t  p roper  
s e l e c t i o n  o f  m a t e r i a l s  can e l i m i n a t e  t h e  meta ls  i g n i t i o n  exper ienced i n  t h e  p a s t .  
S t a i n l e s s  s t e e l  a l l o y s  a r e  a  n o t a b l y  poor  c h o i c e  f o r  oxygen s e r v i c e .  

Space-based engines w i l l  r e q u i r e  an i n t e g r a t e d  c o n t r o l  and h e a l t h  m o n i t o r i n g  
system ( f i g .  8) t o  improve system r e l i a b i l i t y  and e l i m i n a t e  a l l  scheduled maintenance. 

Engine l e n g t h  i s  a  ma jo r  c o n s i d e r a t i o n  when a e r o - a s s i s t  r e t u r n  froin G E O  I s  
employed. Examples o f  t h e  impor tance  o f  l e n g t h  a r e  shown i n  f i g u r e s  9 t o  72. 

F i g u r e s  13  and 14  show t h a t  t h e  use o f  m u l t i p l e  engines has o n l y  m i n o r  i m p a c t  on 
t o t a l  p r o p u l s i o n  system w e i g h t .  

The i s s u e s  a s s o c i a t e d  w i t h  low-6 t r a n s f e r s  a r e  p resen ted  i n  f i g u r e s  1 5  t o  17, 
S i g n i f i c a n t  per formance l o s s e s  w i l l  deve lop when a  s i n g l e  1 5  000 1bF eng ine i s  oper 
a t e d  a t  500 t o  1000 1bF. A lso,  t h e  optimum m i x t u r e  r a t i o  s h i f t s  t o  t h e  f u e l - r l c h  
d i r e c t i o n  d u r i n g  t h r o t t l i n g .  T h i s ,  i n  t u r n ,  i nc reases  s tage  volume and d r y  w e i g h t .  
F i g u r e  17 i n d i c a t e s  t h e  r e l a t i v e  per formance b e n e f i t  o f  one o r  two 3000 I b F  eng ine5  
opera ted  a t  reduced t h r u s t  i n  compar ison t o  one o r  two 15 000 1bF engines operating a t  
t h e  same t h r u s t  l e v e l .  F i g u r e  17 a l s o  demonstrates t h a t  t h e  i n s t a l l a t i o n  o f  t h r e e  o f  
f o u r  s m a l l e r  engines versus two 1 5  000 I b F  engines f o r  a  f a i l - o p e r a t i o n ( i 1  c a p a i b i l i t y  
always r e s u l t s  i n  h i g h e r  per formance d u r i n g  nominal  o p e r a t i o n .  

The s u p e r i o r i t y  o f  m u l t i p l e  engines f o r  m i s s i o n  success and man r a t i n g  i s  shown 
i n  f i g u r e s  18  and 19. 

F i g u r e  20 summarizes t h e  advantages o f  t h e  A e r o j e t  3000 I b F  t h r u s t  eng lne  d e s i g n  
concept,  wh ich i s  shown i n  f i g u r e  21. Photographs o f  t e s t  hardware t h a t  c l o s e l y  par--  
a l l e l s  t h e  des igns  and techno logy  r e q u i r e d  f o r  t h i s  eng ine a r e  shown i n  F i g u r e s  22 t c  
24. 

A e r o j e t  b e l i e v e s  t h a t  a l l  OTV p r o p u l s i o n  requ i rements  can be f u l f i l l e d  w i t h  a 
s i n g l e  eng ine.  Our program i s  des igned t o  deve lop t h e  t e c h n o l o g i e s  r e q u i r e d  Po 
demonst ra te  t h a t  eng ine.  



ADVANCED OTV REQU REMENTS 

@ SPACE-BASING 

@ AERO-ASSIST 

@ LOW G TRANSFERS 

@ MANNED MISSIONS 

@ LOW COST PAYLOAD DELIVERY 

Figure 1 

AEWQJET'S NEW CORE 
NE CAN 

3000 BbF THRUST MODULES 

THRUST SELECTIVITY: 
200-1 8,008 I bF 

Figure 2 
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NEW FEATURES ENABLE 
SPACE-BAS 

@ NON-WEARING SEALS AND 
BEARINGS 7 

@ NO INTERPROPELLANT 
SEALS OR PURGES 

@ NO GEAR BOXES 

@ LOWER OPERATIONAL 
TEMPERATURES 

@ INTEGRATED WEALTH 
MONITORS 

REUSEABILITV 

NO 
MAINTENANCE 

@ SPACE-REPLACEABLE 
UNITS 

F i g u r e  3 

DUAL PROPELLANT 
EXPANDER CYCLE DEL 

@ LOWER OPERATING TEMPERATURES 

@ CONTINUOUS THROTTLING 

@ SMOOTH STARTS 

@ LESS WEAR 

@ LONGER LIFE 

F i g u r e  4 
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OXIDIZER PUMP ZERO 
MAINTENANCE 

LO2 
+ 

o GONTACTlNG BEARINGS 

o INTERPROPELLANT SHAFT 
SEALS 

@ VENTED CAVITIES 

@ INTERPROPELLANT PURGES 

1 0 2  
@ CRITICAL SPEED TRANSlTlOM 

e @ 602 

F i g u r e  5 

LOW TEMPERATURES Y 
EATER MARG 

@ "TURBINE TEMPERATURE $00" F 

@ THR8AT TEMPERATURE 600" F 

@ RADIATION SKIRT TEMPERATURE <2000° F 

F i g u r e  6 



Burn Factor Provides A Ranking Criterion For The 
Selection Of Materials For High Pressure, Gaseoes!; 

Oxygen Applications 

MATERIAL 

Zr Cu 

NICKEL 200 

SILICON CARBIDE 

MONEL 400 

K MONEL 500 

INCONEL 600 

316 STAINLESS STEEL 

INVAR 

HASTELLOY X 

BURN 
FACTOR 

35 

550 

11 45 

1390 

2090 

3226 

4515 

5444 

71 60 

OBSERVATIONS - . - - - 

NO IGNITION IN ANY TESTS > (790/180OCF)* 

NO IGNITION WITHIN EXPERIMENTAL RANGE (825/2200° F j  

NO IGNITION IN LIMITED TESTING 

IGNITION ABOVE 1200°F FRT ONLY (800/1200cl~) 

IGNITION ABOVE I500 FRT (750/1500°F) 

IGNITION ABOVE 1100 (-/110O0F) 

IGNITION IN ALL TESTS (4501800°F) 

IGNITION IN ALL TESTS (675/34OoF) 

IGNITION IN ALL TESTS (7251750°F) 

'(TEMPERATURES FROM PARTICLE lNPlNGEMENTTEST/FRICTlON RUBBING TEST. ( F R T ) )  
- - - 

'FRT AT 1000 PSI 17,000 RPM 

F i g u r e  7 

NTEGRATED CONTROL AND 
HEALTH MON 

' @ CLOSED LOOP CONTROL 

@ DATA COLLECTlON AND ANALYSIS; 

@ DATA FEEDBACK TO CONTROLLEFI 
(I, PEAK PERFORMANCE 
FAILURE PREVENTION 

, @ LlFE PROJECTION 

\ ( REDUCES OPERATIONAL COST 

F i g u r e  8 
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SMALL EN 
AERO-ASS T CONCEPTS 

SHORTER ENGINES ARE PREFERRED 

IDLE MODE OPERATION MAY BE 
REQUIRED 

F i g u r e  9 

EQUAL PERFORMANCE 
SMALLER PACKAGE 

THRUST, IbF 

AREA RATIO 
IbF-sec 

Isp Ibrn 

F i g u r e  10 
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LENGTH CAL FOR A 
AEROMAN G CONCEPbTS 

FOUR 
300CB IbF 
ENCiINES 

1 AEROBIRAKE: 

F i g u r e  11 

MUM LENGTH AOTV 

DROP TANK 
INTERFACE / ENGINE 

STOWED 
FLAP 

DEPLOYED ' 
FLAP 

F i g u r e  1 2  



MULTIPLE ENGINES ALSO PROVIDE 
BOUNDARY LAYER CONTROL AND BOW 

SHOCK SKEWING 

Figure 1 3  

MAXIMUM WEIGHT DIFFERENCE FOR 
6 ENGINES = 135 POUNDS 

2000 t --L FILL, DRAIN, 
& V E N T  

3000 

2500 

PROPULSION 
SYSTEM PRESSURIZATION 
WEIGHT (LBI  

ABORT DUMP 

7 

- 
PROPELLANT FEED 

INSULATION 
&PURGE 

A 

PROPELLANT TANKS 
/ & SUPPORTS 

1- 
O 1 2 3 4 5 6  

NUMBER OF ENGINES 

Figure 1 4  
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FOR LOW G TRANSFERS 
LOWER THRUST ENG NES OFFER 

@ SMALLER SIZE 

@ LOWER WEIGHT 

@ HIGHER PERFORMANCE 

@ SlNGLE OR DUAL ENGINES 

@ THRUST SELECTIVITY 200 TO 3000 IbF 

Figure 1 5  

HIGH OPERATING 
PRESSURE 

L O W E R  
PROPELLANT VOL14ME 
HIGHER PERFORMiAN(2E 

/ 
/ 

/ PC = 2000 

1 PSIA 
/ 

OPTIMUM O/F --y/ 
/ PC = 500 FOS1.A 

Figure 1 6  



3000 LB THRUST MODULES 
ELD H GHER PERFORMANCE 

1 OoO1O 

(TWO) 15,000 ibF 

L3000 IbF MODULES 

3k 6~ 9K I ~ K  15K 1 8 ~  
THRUST. IbF 

v v V 

LOW G SMALL MANNED 
PAY LOADS PC = 20630 PSI 

AT FULL THRUST 

F i g u r e  7 7  

MULT PLE ENG NES REQU 
FOR MANNED M 

@ MULTIPLE ENGINES = @ ENGINE-OUT CAPABILITY 

@ MISSION SUCCESS 

@ MllNlMlZES COMPONENT 
REDUNDANCY 

@ MlNlMlZES DEPENDENCE 
ON HEALTH MONITOR 
SYSTEM 

F i g u r e  1 8  



MULTIPLE ENGINES ENHANCE 
MISSION SUCCESS AND CREW 

SAFETY 

MISSION LOSSES 

VEI3ICL.E AND 
CREW LOSSES 

LOSSES11 000 
MlSSlON 

TEST PILOTS - 
NO. REQ'D FOR MISSION 1 

NO. REQ'D FOR SAFETY 

"FIRST BURN 

F i g u r e  19 

AEROJET APPROACH PROV 
LOW COST PAYLOAD DEL 

@ SMALL SIZE @ LOWER DEVELOPMENT 
COST 

@ LOWER U N I T  COST 

@ BETTER PACKAGlNG 

@ HIGHER PERFBRMPQNCE 

@ MODULAR APPROACH @ OPTlMklM THRUST IFQR 
ALL MISSIONS 

@ ONLY ONE ENGINE 
DEVELOPMENT 
REQUIRED 

@ MULTIPLE ENGBNIES @ MISSION SUCCESS 

F i g u r e  20 



AEROJET'S NEW CORE 

F i g u r e  21 

17 TESTS - GH2/602 
ULAR TCA 

Figure  2 2  

124 

STABLE COMBUSTION 

HEAT TRANSFER 
PERFORMANCE DATA 



CALOR METER NNER CHAM1 

F i g u r e  23 

60,000 RPM LOW SPEC 
SPEED PUMP. NS = 700-100C 

F i g u r e  24 





ADVANCED OTV ENGINES AND ISSUES 

J. R. Brown 
P r a t t  & Whitney A i r c r a f t  

Over t h e  l a s t  decade P r a t t  & Whitney has s tud ied  t h e  p r o p u l s i o n  system 
requi rements  o f  O r b i t  T rans fe r  Veh ic les  (OTV). Based on t h e  c u r r e n t  scenar io  
f o r  o r b i t a l  ope ra t i ons  i n  t h e  l a t e  1990 's  we have de f i ned  a  base l i ne  expander 
c y c l e  engine which w i l l  meet those  requi rements .  

The f o l l o w i n g  p r e s e n t a t i o n  h i g h l i g h t s  t h e  p r i n c i p a l  c h a r a c t e r i s t i c s  o f  
our  b a s e l i n e  engine and d iscusses some op t i ons  which a r e  a v a i l a b l e  t o  
accommodate OTV system o p t i m i z a t i o n  s t ud ies .  A l i s t  o f  engine program issues  
a r e  shown which a r e  dependent on t h e  m i ss i on  scenar io  and t h e  v e h i c l e  system 
c o n f i g u r a t i o n .  F i n a l l y ,  a  summary o f  t h e  r a t i o n a l e  f o r  a  new c ryogen ic  OTV 
engine i s  g iven .  

LATE 1990's SCENARIO 

LEO space station with propellant depot 

Operational OMV 

Substantial LEO-GEO traffic 

Manned GEO sorties 

Reusable, cryogenic, aeroassisted OTV operational 

F i gu re  1  

REQUIREMENTS FOR OTV ENGINE 

Must be compatible with: 

Space basing 

Aeroassist 

Man rating 

Must have: 

High performance 

Long life 

High reliability 

Versatility 

Low operational cost 

FSgure 2 
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OTV ENGINE OPERATING MODES 

I 
Thrust 

Wide range 
conditions 

Low inlet 
pressures 

Phase change 

Thrust = 100 Oh 

Conditions 
normalized 

Low inlet 
pressures 

Zero NPSH 
Prepres- 

surization 

Conditions 
normalized 

High performance 
PU capability 
Low NPSH 

Thrust 
/ \ Thrust - 5 - 25% 

-z 1 O/o * 1.5O/o 
4 

- Tank head idle --- Pumped -A_A___ 
propellant settling I idle I (high AV burns) 

and tank 
pre-pressurization 

Rated thrust - 1 
engine conditioning 

(low AV burns) (low thrust delivery) 
Time t 
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DESIGN CHARACTERISTICS 
Advanced expander cycle engine 

: 15,000 Ib 
: 6.0:1 to 7.0:1 

Chamber pressure : 1500 psia 
Area ratio : 640 

: 482.0 sec at 6.0 MR 

- . - - - - - - : Full thrust (low NPSH) 
: Pumped idle 
(1500 Ib thrust) 

Conditioning 
(saturated propellants) 

: Tank head idle 
i 

1 -- Weight : 427 Ib 
/ Life (design TBO) : 300 firings/lO hr 



NSTALLAT 
Advanced expander cycle engine (1980) 
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PROPELLANT FLOW SCHEMATIC - 
-- 

Advanced expander cycle engine at full thrust 
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ADVANTAGESOFADVANCED 
OTV ENGINE 
-- 

High reliability 

Substantial design margins 

Simple control system 

Adequate life 

Health monitoring relatively simple 

High performance 

0p"sions available 

Figure 7 

ENGINE OPTIONS AVAILABLE 

Full thrust level 

Engine geometric size 

Throttling capability 

Mixture ratio range 

Special mission kits 

Figure 8 



FULL THRUST LEVEL AND SIZE 

Thrust levels evaluated: 500 to 30,000 Ib 

Area ratios evaluated: 400 to 1,000 

ISP (and size) proportional to thrust 

Optimum area ratio: 700 to 900 

DDT&E cost not significantly affected by thrust 

Lirnited applicability of technology for scaling 
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ADVANCED NOZZLE EXTENS 
MECHAN 

t Extended length 
- -- - -- - -1  20 00 . - . 

1 
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THROTTLING CAPABILITY 

* Most missions 

Full thrust for major burns 

Very low thrust for trim burns (THI) 

hlo requirement for intermediate levels 

Special 6-level limited missions 

""Continuous" throttling to hold rnax allowable TIW will 
yield higher average s s p  

Continuous throttling requires more complex engine 
system than a few discrete steps 

* Potential throttled burn during aeroassist maneuver 

Range and levels TBD 
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FUlLL THROTTLE RANGE CONCEPT 
Continuous gaseous O2 injection 

01'2 

F i g u r e  1 2  
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MIXTURE RATIO RANGE 

Optimum mixture range function of PC (for E -750:l) 

6:l at PC - 1000 

5:l at Pc - 500 

4:l at PC - 50 

Off-nominal range required for vehicle considerations 

Boiloff 

Tanking uncertainty 

Special mission requirements 

F igu re  13 

SPECIAL MISSION KITS 
Examples 

High thrust expendable mission 

Low thrust components might be eliminated 

Nozzle area ratio might be increased wlo aero assist 

Low thrust expendable mission 

Control system might be mission specific 

Nozzte area ratio might be increased w/o aero assist 

F igu re  1 4  



ADL'ANCED OTV ENGINE ISSUES 

" * Engine thrust level(s) 

Engine throttle requirements 

" * Engine geometry constraints (including number of engines) 

Engine operational lifelservicing requirements 

Ba:;ing mode 

Ewgine/aeroassist mode interaction 

Is " b w  thrust deployment" a viable OTV mission? 

Is rnanned GEO mission viable? 

Figure 1 5  

SUMMARY 

A new cryogenic OTV engine will significantly enhance the capability of the 
OIV system in the following areas: 

Diesigned for space basing 

Dissigned for aeroassist compatibility 

Dlssigned for man-rateability 

D~asigned for versatiiiity/very high performance 

qm Commitment to DDT&E should be based on sound design, low risk 
approach which for an advanced technology engine includes key 
component demonstrations 

6-10 year leadtime needed for high technology engine (depending on 
preceding component technology demonstration programs) 

8 T V  open issues exist 

e8 Continuing iterations with NASA/systems contractors required to 
resolve issues and focus technology program 

Figure 16 



ADVANCED OTV ENGINE CONCEPTS 

A. T. Zachary 
Rockwell International/Rocketdyne Division 

Orbital transfer vehicles (OTVs) of the 1990 to 2000 period will deliver payloads 
for the more energetic of the NASA missions currently defined: large structure de- 
ployment, satellite servicing, and manned sorties to geosynchronous orbit. Along with 
advances in vehicle design, advances in engine technologies are required to improve 
overall engine capabilities, and thus vehicle performance, reliability, cycle fatigue 
life, maintainability, and cost. This paper briefly presents the results and status 
of NASA-LeRC-funded engine technology effort to date and related company-funded 
activities. 

Advanced concepts in combustors and injectors, high-speed turbomachinery, con- 
trols, and high-area-ratio nozzles that package within a short length result in engines 
with specific impulse values 35 to 46 seconds higher than those now realized by opera- 
tional systems. Equally, if not more important, will be the improvement in life, re- 
liability, and maintainability. 

INTRODUCTION 

Studies conducted under NASA contracts have identified near-term, intermediate-,. 
term, and longer term technologies to meet the needs of a broad-based program of space 
utilization. As shown in figure 1, the evolution of the development process for the 
OTV leads to manrated service near the end of the century. The technology drivers in 
meeting the goals of a viable, space-based system are space basing, aeroassist, manned 
operation, and low-g transfers. As presented in figure 2, approaches have been iden- 
tified; however, with specific challenges that must be met. These challenges of on- 
orbit servicing, increased life, reliability, maintainability, reduced length, and 
increased performance will be achieved through an evolutionary process as indicated in 
figure 3. 

The NASA plan for technology acquisition for the orbit transfer rocket engines of 
the period 1990 to 2000 is a three-phase approach encompassing conceptual- definition, 
preliminary experimental evaluation, and critical component technology verification 
stages. This approach is as follows, with the principal goals of the studies 
identified. 

PHASE I Conceptual Designs and Technology Definition 

e Identify, screen, evaluate, and select advanced technology 
concepts 

Provide engine conceptual designs and technology acquisition 
plans 





TECHNOLOGY PROPULSION 
DRIVERS SYSTEM CHALLENGES *PPRo*CH 

SPACE BASING 

AERO ASSIST 
MAINTENANCE 

a INCREASED 
PERFORMANCE 

a REDUCED LENGTH 
e REDUCED WEIGHT 

a WIDE THROTTLE 
TRANSFERS 

PERFORMANCE e CONTINUOUS vs 

E 

HIGH 6 NOZZLES 

- -- 

*IMPROVED ANALYTICAL TE 

OMATERIAL IMPROVEMENTS 

.LONG LIFE BEARINGS 

.COMPOSITE MATERIALS FOR NOZZLES 

ADVANCED CONTROLS AND DlAGNOSTl 

E N H A N C E D  HEAT TRANSFER CONCEPTS 

-TURBOPUMP PERFORMANCE ENHANCEMENTS 

TIME ------d 

Figure 3. Cryogenic OTV Propulsion 



PHASE I1 Exploratory Research and Technology 

Unique and generic advanced technology concepts 

@ Simulation testing in test rigs 

PHASE IIT Critical Component Design and Fabrication 

Critical component design and fabrication readiness 

An Lmport~ant first step in these plans has been taken with the completion of the 
coneeptuaP design and technology definition studies entitled, "Orbit Transfer Rocket 
Engine Technology," with the primary objective of identification, and selection of 
adganced teehriology concepts and technology acquisition plans that will benefit the 
OTV engines of the 1990s. 

ULTIMATE OTV ENGINE EVOLUTION 

A phased approach has been selected for experimental development and verification 
of the technologies that will be featured in the ultimate OTV engine (fig. 4). The 
technologies bill be evaluated in an integrated components evaluator upon which thrust 
chamber, turbcmachinery, control system, and auxiliary system technologies will be 
verified in an engine system environment. The integrated components evaluator will 
iacllitate the verification of advanced component concepts in three technology group- 
r n g s :  near-term, intermediate-term, and long-range categories, and their successive 
-11tegration into advanced engine cores. At the completion of each technology period, 
an engine candidate and its technologies will have been defined that can be developed 
according to NASA needs. Each of these engines would provide large performance and 
operational benefits over the reference engine used in the studies (RL10A-3-3) and, 
because of the technology approach taken, could be developed as a growth version of 
t \ e  Advanced Gore Engine. The near-term engine schematic and mockup are shown in 
flgvres 5 and 6, respectively. 

The devel3pment of the ultimate engine would occur in the mid-1990s. The engine 
is planned as an expander cycle engine with a chamber pressure of 2000 psia, A nozzle 
eupansion area ratio near 1300:1, and a specific impulse greater than 480 seconds. 
O>erat.ionally, the engine will be capable of 20 hours of service-free life, deep 30:l 
~hrottling, and, with its health-monitoring and control system, capable of full space 
based maintenance and operation. For vehicles based in the Space Transportation Sys- 
t d n i  (STS) and Eor medium lift-to-drag aeromaneuvering OTVs, the engine will be fitted 
w ~ t h  a retractable nozzle to reduce stowed length to 40 inches. 

The engine thrust level and number of engines will undergo final selection when 
the vehicle crew safety and reliability approach are definitized. Since a large degree 
of technology commality exists in the range of thrusts of 3000 to 15,000 pounds, 
Roc~etdynek interim selection of 15,000 pounds engine rhrust is appropriate for tech- 
nc)log-y development. 

KEY ENGINE DESIGN ISSUES 

Key issues of the engine system and component design reside in the combustor/ 
injector, nozzle, turbomachinery, control system, and the auxiliary heat exchangers 
as outlined in figure 7. High heat extraction in the combustor, injector, and nozzle, 
wtth simul~:aneous efficient combustion and gas expansion, are required to provide high 
cilsrnber pressure and high specific impulse. A combustor and injector with extended 
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e MlGH HEAT-LOAD 
COMBUSTQR/INJECTOR 

@HIGH AREA RATIO NOZZLE 

e HIGH a EXP-RA~TIGN 

r LONG LlFE 

e LIGHT WEIGHT 

e LONG LlFE 

e S1MPLICITVIRELlAr)ILIM 
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COMPACTNESS 
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0 LONG LlFE 

9 COST 
HEAT TRANSFER EFF. 

COMPACTNESS 

€4 LIGHT WEIGHT 
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heat transfer surfaces, providing high heat extraction, efficient wall cooling, and 
wall strain management to maintain desired component life, are the techriology chal- 
lenges in the combustor and injector. A large nozzle expansion area ratio with a re- 
tractable nozzle is necessary for high specific impulse and envelope compactness, Ad- 
vanced material technologies and retraction mechanisms that reduce weight and yet pro- 
vide adequate reliability are key technology issues of the nozzle assembly. 

High speed, multiple staging, small size, and high turbine and pump efficiency 
are requirements of the OTV engine turbomachinery. The technologies and technology 
issues to be addressed in achieving the high levels of performance required in each of 
these areas are: bearing life; rotordynamic characteristics of multiple-staged impel- 
lers; materials for increased turbine and impeller strength, life, and reduced weight; 
and reduction of parasitic performance losses of small turbomachinery through use of 
soft seals and efficient diffuser design of impeller-to-impeller crossover n(>tworks, 

Low-torque, light-weight, electrically driven valves, and driver motors are tech- 
nology issues to be developed for the advanced control system, as well as adxianced 
sensor technology and advanced multivariable controller systems. 

A turbine gas regenerator will provide increased power cycle performance through 
heat recuperation. For maximum benefits, the recuperator and the idle-mode heat ex- 
changer will require high heat transfer efficiency in a compact envelope. 

CONTROL SYSTEM TECHNOLOGY EVOLUTLON 

The near-term OTV engine shown in figure 4 uses a control and diagnostic system 
based on the current state of the art (SSME program) with one notable exemption: con- 
trol valves are low-torque devices with an electric motor providing the 3rimary means 
of actuation. Electrical power is desirable for upper-stage engines; however, law 
power requirements are necessary to keep the power supply small. The near-term 0TV 
engine control system provides functions similar to the SSME system: control of engine 
operating modes, checkout and status monitoring, input/output data processing, and 
protection of engine and manrated capability. The controller is a full-range system 
providing closed-loop control of thrust and mixture ratio during mainstage, start, 
and shutdown transients. Control during transients is required to maintain component 
operating limits at levels compatible with the long life required in the near tern 
(300 cycles, 10 hours). Redundancy in the controller, valves, and valve actuators is 
used to enhance the manrating capability of the system. 

The longer range technology development of this system aims to improve control 
accurac.y during transients, improve control system weight and simplicity:, and improve 
control and diagnostic system reliability through improvements of the weakest link rn 
the system: the sensors. Control accuracy improvement procedures will address modern 
multivariable control methodology and take advantage of modern miniaturin:ation tech- 
niques for controller components. Emphasis of the long-range technology will be to 
provide a highly reliable control and diagnostics system specially suited for space- 
based OTV engine maintainability. The system will do continuous wear monitoring and 
fault prediction, and ideally be capable of fault compensation or avoidance. The diag- 
nostic system is summarized in figure 8. 





ENGINE PACKAGING FOR SPACE-BASED MAINTAINABILITY 

Several engine packaging concepts are shown in figure 9. Components in rhe ncar-  
term OTV engine are packaged to conserve space in a volurne-limited shuttle orbiter, 
Power package components arranged around the combustor allow retraction of tke excend- 
ible nozzle for stowage in the shuttle, and still provides required mainitenarce volunlcs 
for ground-based maintenance operations. The component interfaces of the near-"term 
engine are designed with ground-based, line-replaceable unit philosophy. 

For space-based operations, the overall maintenance, system and/or subsystem 
changeout philosophy will determine the engine component packaging arrangement and 
component interface design. Space-based maintenance costs and component changeout ease 
will determine the final maintenance philosophy. If, after economic analysis, engine 
changeout is the smallest maintenance module operation defined, then the near-term 
conventional engine packaging design with advanced enginelvehicle interface connections 
will be capable of space-based operation and maintenance. 

The open-pack engine design will allow changeout of key engine compon.ents in a 
space environment. Increased maintenance volume will be defined for those components 
and a packaging design selected to facilitate component maintenance and $changeout. An 
advanced control and diagnostics system will facilitate component changeout for cause 
rather than mandatory scheduled replacement. 

In a space-based maintenance scenario where any or all components are subject to 
in-place maintenance and changeout, en advanced engine packaging configuration for 
efficient and speedy checkout removal and replacement will be desired. The components 
will be placed to facilitate access and their interface joints designed for minirnunr 
checkout and uncoupling time. A diagnostics system to facilitate judgement of cam- 
ponents due for replacement and checkout of new components would then be required. 

CONTRACT AND COMPANY-FUNDED ACTIVITIES 

The current status of the NASA LeRC contract activities and Rocketdyne-funded 
parallel effort is outlined in Table I. With the completion of the system study to 
identify specific technology tasks to be studied, several of the tasks are rzow being 
funded or are in the process of approval and will be initiated shortly. The specific 
tasks in process are listed in Table I1 and encompass a number of critical technology 
areas in support of providing the technology base for a full capability engirze in Lhe 
1990s. 

In conjunction with the NASA funded effort, key technologies have been under 
study at Rocketdyne and are now entering the hardware stage for demonstrarior~. T h r  
key elements are shown in figure 10, and represent an important learning process En 
design and fabrication of high performance engine components. It is planned to con- 
tinue the evaluation of these components and thus develop a realistic perspective In 
the problems of developing a high performance, reliable, maintainable engine system, 



ADVANCED PACKAGING CONCEPTS 
-- 

CONVENTIONAL PACICAGINC; OPEN PACKAGING FOR 
EASE OF MArNTENANCE 

MODULAR PACKAGING 
PULL OUTIPLUG IN MAINTENANCE 

F i g u r e  9 .  Engine Packaging f o r  Space-Based M a i n t a i n a b i l i t y  





Table I. Contract and In-House OTV Engine Activities 

@ NASA OTV ROCKET ENGINE TECHNOLOGY PROGRAM PLANNED TO 
CONTINUE THROUGH 1990 
o CONTRACT NAS3-23172 COMPLETED 

e SYSTEM STUDY - DEFINITION OF NEEDED TECHNOLOGY 
o CONTRACT NAS3-23733 STARTED 

e COMPONENT TECHNOLOGY AND SYSTEM STUDIES 
@ ROCKETDYNE IN-HOUSE COMF'ONENT ANALYSIS, DESIGN, AND 

FABRICATION PROCEEDING ON SCHEDULE 

Table 11. OTV Engine Technology Contract NAS3-23773 
Task Status 

@ ENHANCED HEAT LOAD THRUST CHAMBER 
@ INTEGRATED CONTROL AND HEALTH-MONITORING SYSTEM 
e INTEGRATED COMPONENTS EVALUATOR 

HIGH VELOCITY DIFFUSING CROSSOVER 
SOFTWARE RING SEALS 

CONCLUDING REMARKS 

There are many potential problems in producing a high-performance, space-viable 
rocket engine system for the OTV. The process will be evolutionary and will require 
the support of NASA and Industry. The process has been initiated with a well-ordered 
plan for establishing the required technology base and continued future effort should 
he strongly supported. 



E A R T H - T O - O R B I T  P R O P E L L A N T  T R A N S P O R T A T I O N  O V E R V I E W  

D. Fester 
Martin Marietta Denver Aerospace 

Large quantities of cryogenic propellants are needed to support Space 
Station/OTV operations. Two ways to get propellants into space are: 
transporting them in dedicated tankers or scavenging unused STS propellant 
(which promises significant cost savings). This discussion centers on 
scavenging propellant, both with and without an aft cargo carrier system, An 
average of two to four flights per year can be saved by scavenging and 
manifesting propellant as payload. Addition of an aft cargo carrier permits 
loading closer to maximum, reduces the required number of flights, and reduces 
the propellant available for scavenging. Sufficient propellant remains for 
OTV needs, however. 

CRYOGEN PROPELLANT SUPPLY - DEDICATED TANKER - 
r 70,000 LBM STORAGE ON SS 

@ RESUPPLIED B Y  STS 

e Two RESUPPLY TANKS TO 

AID PAYLOAD SCHEDULING 

@ C O f l r l O ~  I / F  FOR S S  
STORAGE TANKS AND 

STS ASE (ABORT DUMP) SPAC:E STA. 
C R Y O ~ ~ E N  S 

c STS TANKS TO USE TANK MGDOI 

Figure L 
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Piliternate Locations 
for Propellant Scavenging Tanks - 
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GROUND RULES 

1 .  NASA LOW MISS ION MODEL - R E V I S I O N  G, DATED OCTOBER 1 9 8 2  ( 1 9 9 1  - 2 0 0 0 )  

2. WTR AND DOD MISS IONS NOT USED 

3. M I S S I O N  MODEL MANIFESTED ON GROSS YEARLY B A S I S  - LOAD FACTORS OBTAINED FROM 
MSFC MODEL BASED UPON WEIGHT AND/OR VOL'UME 

4 .  A L L  FL IGHTS LOADED TO MAXIMUM PAYLOI\D WEIGH1 

5 .  DIFFERENCE BETWEEN AVERAGE CARGO WEIGHT AND MAXIMUM PAYLOAD C A P A B I L I T Y  MADE UP 
BY ADDING PROPELLANT AND TANKAGE AS CARGO 

6 .  SPACE STAT ION AT  28.5" INCL INAT ION,  2 5 0  NM ALT ITUDE 

7 ,  OTV PROPELLANT REQUIREMENTS FOR GEO MISS IONS ONLY 
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STS Lift Capability for 28.5 Degree inclination 
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F3rs~ellant Scavenging Definitions 

RES I DLIAL PROPELLANT = UNUSABLE + F L I G H T  PERFORMANCE RESERVE + FUEL B I A S  

SURPLUS PROPELLANT = PROPELLANT L E F T  AT MECO MINUS RESIDUAL (NOT USED 
DUE TO LESS THAN MAXIMUM PAYLOAD) 

PAYLOAD PROPELLANT = "SURPLUS" LOADED INTO SCAVENGING TANKS BEFORE 
LAUNCH 

ACC EFIVIRONMENT ASSUMED EQUIVALENT TO ORBITER CARGO BAY 

S I N C E  TtiE E i  I S  A l  NAYS I OAOFiJ F l ! l  1 . 5 l lRPI  I I S  IIR(II'CI l At11 FXISTS MI1 I1 I T S S  1 l I A I i  I.IAXIMII14 l lA' i l  O f i n .  sOPlF n F  T l l l  5 
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Figure  6 
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VOLUME 

@ WEIGHT 

Welgkrt Volume Utilization 

X WEIGIiT OR VOLUME USED PER F L I G H T  

OF THE OVER 2 0 0  F L I G H T S  StlOWN FOR T l lE  NEXT 10 YEARS, NEARLY I lALF ARE VOLUME I . IMITED,  W l l l L E  ONLY A FEld ( L E S S  THAN 
1 0  PERCENT) ARE WEIGH1 L I M I T E D ,  I N D I C A T I N G  AN ADVANTAGE OF USING AN ACC, 

Figure  9 
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Typical Propellant Tank Installations in ACC 

SCAVENGE TANKS PLUS PAYLOAO 
9.W LB PROPELLANT 

SCAVENGE TANKS FOR TANKER YltSSlOM 
2i.W La PROPELLANT 

TUO P O S S ~ R L E  INSTALLATIONS ARE SHOWN. ONE INCLIIOES TWO p a n - n  r n u l c ~ o s  P L I J ~  T W K S  FOR 91x10 LOM PRliPELLAIlT ANII THE 
OTHER HAS SCAVENGE T A K S  O K Y  TO ACCWUUATE 3 0 . 0 0 0  L i i H  PRIIPELLANT. 

F i g u r e  1 2  

Propellant Tank Transfer with OMV 

ACC PAYLOAO EA 

TliE OMI I l R S  P ICKED UP THE SCAVENGE TANkS FOR lRANSFrR TO TIIE SPACE STAT13N DEPOT. TIIE E l  OEORalT MOTORS CAN BE 
SEEN ATTACHED TO IHE ACC STRUCIIIHL. 

F i g u r e  13  

r AN AVERAGE OF 2 TO 4 STS FLIGHTS PER YEAR CAN BE SAVED BY SCAVENGING AhD 
MANIFESTING PROPELLANT AS PAYLOAD TO SUPPORT SPACE-BASED OTV OPERATIONS. 

e STS FLIGHTS SHOULD BE MANIFESTED TO CARRY MAXIMUM PAYLOAD WEIGHT. 

r ADDITION OF AN ACC PERMITS LOADING CLOSER TO MAXIMUM AND REDUCES PROPELLANTS 
AVAILABLE FOR SCAVENGING (162 VS. 172 FLIGHTS) .  OTV NEED S T I L L  MET. 

r ET RESIDUAL PROPELLANTS HAVE AN OXIDIZER/FUEL RATIO FROM 2 PO 4 .  

F i g u r e  1 4  





PASSIVE STORAGE TECHNOLOGIES 

Peter K i  t t e l  
NASA Ames Research Center 

Passive storage o f  cryogens i n  space has been used f o r  sometime i n  

s c i e n t i f i c  instruments. This paper w i l l  descr ibe some recent  advances i n  

storage technology and how passive techniques could be app l ied  t o  the  storage 

o f  p rope l l an ts  a t  t he  Space Sta t ion .  The devices considered here are  passive 

o r b i t a l  disconnect s t r u t s ,  cooled s h i e l d  op t im iza t ion ,  l i f t w e i g h t  sh ie lds  and 

c a t a l y t i c  conver ters.  

Cool ed Sh ie lds  

Cooled sh ie lds  can g r e a t l y  reduce the  tank heat  l oad  i n  cryogen storage 

systems. Th is  i s  t he  case f o r  bo th  passive and r e f r i g e r a t e d  systems. I n  

pass ive  systems, the enthalpy o f  the  e f f l u e n t  gas i s  used t o  cool sh ie lds  

embedded i n  t h e  i n s u l a t i o n  and thus  i n t e r c e p t  t he  heat  before i t  gets t o  the  

tank. I n  r e f r i g e r a t e d  systems, t he  sh ie lds  and tank are  cooled by an ex terna l  

re ' f r igera tor .  The use o f  cooled s h i e l d s  can reduce t h e  o v e r a l l  r e f r i g e r a t i o n  

power. 

The ana lys i s  presented i n  t h i s  sec t i on  are  given i n  a  parametr ic  form. 

This  has the  advantage of be ing  i n s e n s i t i v e  t o  t h e  exac t  model used f o r  t h e  

thermal c o n d u c t i v i t y  o f  t he  i n s u l a t i o n .  The ana lys i s  a1 so app l i es  t o  
i n s u l a t i o n s  t h a t  are penetrated b y  s t r u t s ,  p l  umbing, and wires. A l l  of these 

pene t ra t i ng  devices a re  assumed t o  be at tached t o  the  cooled sh ie lds  and the  

thermal c o n d u c t i v i t y  f u n c t i o n  ad jus ted  accordingly .  We have a1 so assumed t h a t  

the  i n s u l a t i o n  i s  mu1 t i 1  ayered i n s u l a t i o n  (such as double a1 m i n i  zed My1 a r  

w i t h  s i l k  n e t  spacers). The ana lys i s  uses a  tank temperature o f  20 K and an 

o u t e r  s h e l l  temperature o f  256 K (460°R). It should be noted t h a t  t he  heat  

loads  are  extremely s e n s i t i v e  t o  t h e  ou te r  s h e l l  temperature. 



The use of cooled shiel d s  has the further advantage of a l l  owing thicker 
insulation. Practical 1 imitations 1 imit MLI to  blankets of 5 cm (2  inches) 

thick. Thus, an unshielded system can only have 5 cm of insulation. In a 
s h i  el ded system, each shi el d can support a bl an ket a1 lowing more i nsul ation. 

The optimization analyses presented here are not the only ones tha t  can be 
done, and they may not be the appropriate ones i n  a l l  cases. In doing the 

optimization, I  have not considered the mass or volume constraints on the 
system. 

PASSIVE ORBITAL DISCONNECT STRUTS (PODS- I11  1 

0 VARIABLE CONDUCTANCE-VARIABLE STRENGTH TANK SUPPORTS 

0 HIGH STRENGTH DURING LAUNCH 
0 LOW CONDUCTANCE ON ORBIT 

LAUNCH AND ORBITAL CHARACTERISTICS INDEPENDENTLY SPECIF IED 

0 EXAMPLE 

0 FOR LAUNCH RESONANCE FREQUENCY 3 5  Hz 
0 FOR ORBITAL RESONANCE FREQUENCY 20 Hz 

0 RESULTS I N  x i 0  LOWER ORBITAL HEAT LEAK 

0 WOULD IMPROVE I F  ORBITAL REQUIREMENT WERE LOWER 

O STATUS 

0 A SYSTEM OF 6 STRUTS TO SUPPORT A q 3 0  KG TANK I S  BEING LAB TESTED 
0 THESE STRUTS ARE L I M I T E D  BY A MINIMUM GAUGE REQUIREMENT 
3 STRUTS FOR A BIGGER SYSTEM W I L L  PERFORM BETTER 

F i g u r e  1 

COOLED SHIELDS 

0 THE USE OF COOLED SHIELDS CAN GREATLY REDUCE THE TANK HEAT LOAD 

0 SHIELDS ARE USEFUL I N  BOTH PASSIVE AND REFRIGERATED SYSTEMS 
0 ANALYSIS APPLIES TO COOLED STRUTS. PLUMBING, WIRES. ETC., ALSO 

0 THE PERFORMANCE OF BOTH SYSTEMS I S  SENSIT IVE  TO THE OUTER SHELL 
TEMPERATURE 

Figure 2 



The analysis of the passive system i s  based on the method of miala'num mass 
5 flow* This type of analysis i s  appropriate For storage systems where there 

i s  no internally generated (from a sc ien t i f ic  instrument, for exampl e )  heat  

load, The heat load on the tank i s  converted t o  a  mass flow which ?:hen G O O I S  

the shields. The mass flow i s  minimized w i t h  respect t o  position and 

temperature of the shields within the constraints of thermodynamics. Th" scan 
be reduced to a  system of 2N+1 simultaneous equations, where N i s  t h e  number 

of shields.  These equations can be easi ly  solved by an i t e ra t ive  procedure, 

This gives the optimum locations,  temperatures, and heat loads of t h e  s h i e l d s .  

These are given in the attached Table. The shield locations have bebell: 

nomalized by dividing by the total  insulation thickness (not  incl u d i n q  t h e  

shield thicknesses). The temperatures are given its Kelvin .. The resul t f n g  

heat loads have been nomalized b y  dividing by the heat load of an ~ lnsh- ie lded  

tank with 2 inches ( 5  cm) of insulation, t h i s  being "ie thickest b l a n k e t  t h a t ,  

can be easi ly  manufactured. There are two columns of hea t loads  shown, "he 

f i r s t i s  for a  t o t a l  insulation thickness of 2 inches. The second co3 urn9 

assumes that  the thickest insulation blanket ( the  outernost one) i s  2 inches 

a n d  the others are increased proportional l  y. 

An intel-esting r e su l t  of th i s  analysis i s  that  the shields are riot evenly 
spaced in position o r  temperature, Rather, they are closer t o  the  ::anlie 'nis 

i s  a resu l t  of the thermal conductivity decreasing with temperature, One c a n  

a l so  see that the heat load decreases as the number of shields i s  irccreassd- 

The f i r s t  shield resu l t s  i n  a  large reduction. There i s  s t i l l  a  si$yn%"ffca?e 

gain by using 2 shields ,  b u t  not for  more than 2 shields.  The re1at:ive h e a t  

l o a d  For the case of an in f in f t e  number of cooled shields i s  given f o r  

reference. 

She analysis for refrigerated systems uses the same assumptions as cbove 

but takes a  different  approach. I t  uses the method o f  minimum entropy 
production. This method i s  appropriate for  active refrigerated sys'tems a n d  

for passive systems with suf f ic ien t  internal heat generation. The a n a l y s i  s 

presented here i s  for the l a t e r  case where the efficiency of the rei'rigeratiaar 

can be ignored (Carnot efficiency i s  assmed).  For an active refrigeraied 

system the entropy produced by the refr igerator  inefficiency would  have .$a be 

included. The entropy produced a t  the shields and a t  the tank i s  S.; = Oi/Ti 

where Qi i s  the heat flux absorbed a t  the i t h  shield ( o r  a t  the t a n i ( )  a n d  Ti 



COOLED SI-IIELDS 
PASSIVE SYSTEMS 

0 BASED ON METHOD OF MINIMUM BOIL-OFF 

0 OPT IMIZED LOCATION AND TEMPERATURE OF SHIELDS 

0 ASSIJMPTIONS: TANK AT 2 0  K. OUTER SHELL AT 2 5 6  K 
DOUBLE ALUMIN IZED M Y L A R I S I L K  NET INSULAT ION 

NUMBER NORMALIZED' SHIELD RELATIVE H E A T  LOAD 
OF SHIELDS LOCATION TEMP. .  K 2" TOTAL '  2' T H I C K E S T ~  

1) TANK - 0, OUTER SHELL - 1. THICKNESS OF SHIELDS NOT INCLUDED 
2) TOTAL THICKNESS OF INSULAT ION (NOT COUNTING SHIELD THICKNESS) I S  

TWO INCHES 
3 )  THICKEST INSULAT ION BLANKET I S  TWO INCHES TH ICK  

Figure 3 

i s  t h e  respective temperature. The total  entropy produced i s  S = - QO/To f 

Oi/Ti where To i s  the outer shell temperature a n d  Q0 i s  the sum of the Q i t s .  

The n~os"chermodynamical ly  e f f i c i en t  system occurs when S i s mi nimi zed with 

respect  "c the location and temperature of the shields.  (This will give the 

system tha t  requires the l e a s t  refr igerat ion.)  This method involves a simple 

i t e ra t ive  process similar t o  the one used in the passive case. 

"i'e pa~ametric resu l t s  are shown in the attached Table. The values in the 

l a s t  columns refer t o  the heat load refrigeration required on the tank due to  

the insulation. The heat t ha t  must be removed from each of the shields i s  

a1 so simple t o  calculate b u t  has been l e f t  off the chart  for  c l a r i ty .  More 
h e a t  must be extracted a t  the shields than in the storage case. In a passive 

system th i s  additional cooling must be suppl ied by an increased mass f l  ux 
caused by the instrument dissipation. The principal r e su l t  of t h i s  analysis 

i s  t h a t  the op t imum location of the shields i s  s l ight ly  far ther  o u t  in the 

i n s u l a t i o n  and the i r  o p t i m u m  temperatures are s l ight ly  colder. 



COOLED SHIELDS 
PASSIVE INSTRUMENT OR REFRIGERATED SYSTEMS 

0 BASED ON METHOD OF HINIMUM ENTROPY PRODUCTION 

0 OPT IMIZED LOCATION AND TEMPERATURE OF SHIELDS 

0 ASSWPTIONS:  TANK AT 2 0  K. OUTER SHELL AT 2 5 6  K 
DOUBLE ALUMINIZED MYLARIS ILK  NET INSULAT ION 

NUMBER NORHALIZED' SHIELD RELATIVE HEAT LOAD 

O F  SHIELDS LOCATION TEMP.. K 2"  TOTAL^ 2" T H I C C E S T ~  

0  1.0 1.0 
1 . 4 2  9 5  - 1 9  .11 
2 " 2 6 .  .59 60 ,  I'll . l i  .o'lq 

3 .19 ,  .41 ,  . 6 8  46, 95, 1 6 8  . 0 8 2  - 0 2 6  

1) TANK = 0, OUTER SHELL = 1. THICKNESS OF SHIELDS NOT INCLUDED 
2 )  TOTAL THICKNESS OF INSULAT ION (NOT COUNTING SHIELD THICKNESS) 

I S  2 INCHES 
3) THICKEST INSULAT ION BLANKET I S  2 INCHES TH ICK  

Figure 4 

B o t h  the passive and the refrigerated systems require good heat 

exchangers. These are par t icular ly d i f f i c u l t  t o  model in the passive case 

because the eff luent  gas passes through several flow regimes. I t s s t a r t s  a s  
laminar flow a t  the tank and ends as sonic flow a t  the exhaust nozzSe. T h e  

flow a1 so spans a  large "cmperature range with t h e  concomitant v a r i a t i o o  i n  

the properties of the gas. Fortunately, there are models available t o  h a n d l e  

t h i s  problem. 8 

If shields are t o  be used, i t  i s  important that  t he i r  mass be kept small 

t o  keep the system mass down. However, the shields must be s t i f f  enough to 

meet the resonance requirements. A possible choice i s  to  use thin a l  umiwum 

sheet bonded t o  aluminum honeycomb.' We have done an analysis for  a 
3 3 2 rn (70 f t  ) instrument system, This analysis showed that  a  0.93 m (0m0@5" ' 1  

A1 sheet bonded t o  0.64 cm (0,25'7 thick Al honeycomb (1.3 cell  s/c:m 06 0,033 

m gauge) shoul d have suf f ic ien t  thermal conductivity and strength , The 
2 density of such a  s t ructure i s  0.57 Kg/m . 



COOLED SHIELDS 

0 HEAT EXCHANGERS FOR PASSIVE SYSTEMS 

0 DIFF ICULT TO MODEL 

0 LARGE TEMPERATURE DEPENDENCE OF GAS PARAMETERS 
0 SPANS DIFFERENT FLOW REGIMES - SONIC AT E X I T  

0 MASS OF SHIELDS ARE IMPORTANT I N  EITHER PASSIVE OR ACTIVE SYSTEMS 

0 USE LIGHTWEIGHT CONSTRUCTION 

0 THIN AL SHEET BONDED TO AL HONEYCOMB 
0 -0.6 K G I M ~  POSSIBLE 

Figure 5 

Para-Ortho Conversion 

The heat load in passive hydrogen systems can be reduced by using a 

c a t a l y s t  on the shields.' The converter speeds up  the  conversion of para- 

hydrogen to ortho-hydrogen. The equi 7 i br i  um mixture of para (anti-para1 1 e l  

p r o t o n  spins)  and ortho (para l  1 el proton spins)  i s  temperature dependent, A t  

20 K i t  i s  >99% para and a t  300 K i t  i s  25% para. The para-ortho conversion 

i s  an endlothermic reaction t ha t  i s  usually too slow to  be of use. However, i t  

can be speeded u p  by using appropr ia te  c a t a ly s t s .  The heat of conversion has 

a maximum of 400 J /g  a t  100 K.  T h i s  compares with the enthalpy of the  gas of 

900 319 for  a change i n  temperature from 20 K t o  100 K. Thus, the react ion 

can be used to supply addit ional  r e f r ige ra t ion  to the sh ie lds .  Conversion 

e f f i c i enc i e s  of ~ 1 0 0 %  are  possible w i t h  conmercially avail  able c a t a ly s t s .  For 

example, the use of APACHI-1 would require about 100 g of c a t a l y s t  f o r  each 

gfs o f  hydrogen flow. 

One way of using a c a t a l y s t  would be t o  increase the performance of a 

p a s s i v e  system. This i s  most e f f ec t i ve  i f  the c a t a l y s t  can be at tached t o  a 

sh ie ld  running near the 100 K peak i n  the heat of conversion. From the 
previous 'Tables i t  i s  seen t h a t  the 1 sh ie ld  and 3 sh ie ld  cases a re  ideal f o r  

t h i s ,  An analys is  of the one shie ld  case i s  given in the attached Table. A 

95% reduc4Lion i n  heat  load can be achieved, 



PARA-ORTHO CONVERSION 

0 TWO FORMS OF H2 

0 P A R A - A N T I - P A R A L L E L  PROTON S P I N S  
0 ORTHO-PARALLEL PROTON S P I N S  
0 A T  3 0 0  K - 2 5 %  PARA 
0 A T  2 0  K - > 9 9 %  PARA 
O PARA T O  ORTHO CONVERSION I S  ENDOTHERMIC 
0 PEAK HEAT OF CONVERSION 4 0 0  JIG,  X a 1 O O  K 

(ENTHALPY 2 0  K - 1 0 0  K a 9 0 0  J I G )  
0 CONVERSION REQUIRES CATALYST 

0 100% CONVERSION P O S S I B L E  
o -100  G C A T I G H ~ S - ~  FOR APACHI-1 

0 IMPROVED P A S S I V E  SYSTEM 

RELATIVE E1EAT L O A D  

SHIELDS LOCATION TEHPERATURE 2" T O T A L  2" T H I C K E S T  
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ACTIVE COOLING REOUIREMENTS FOR PROPELLANT STORAGE 

G a i l  A .  K l e i n  
NASA J e t  P r o p u l s i o n  L a b o r a t o r y  

Recent NASA and DOD m i s s i o n  models h a v e ' i n d i c a t e d  f u t u r e  needs f o r  a1rki.ta.1 

c r y o g e n i c  s t o r a g e  and supp ly  systems. Cryogens r e q u i r e d  w i l l  i n c l u d e  kiydrogen 

and oxygen. Tank s i z e s  w i l l  vary  f r o m  32 ft3 t o  1800 ft3 f o r  applications 

r a n g i n g  f r o m  Space S t a t i o n  on board p r o p u l s i o n  t o  Space S t a t i o n  O r b i ' t a l  T r a n s f e r  

V e h i c l e  (OTV) p r o p e l  l a n t  s to rage .  The s t o r a g e  d u r a t i o n s  may vary froen a few 

hours  f o r  such m i s s i o n s  as OTV how E a r t h  O r b i t  (LEO) t o  Geosynchronous E q ~ i a -  

t o r i a l  O r b i t  (GEO)  t r a n s f e r  and r e s u p p l y ,  t o  s e v e r a l  y e a r s  f o r  m i s s i o n  such a s  

Space S t a t l ' o n  s t a t i o n  keep ing  and space-based l a s e r  systems. There  ?is stscsng 

economic i n c e n t i v e  f o r  r e d u c i n g  t h e  b o i l  o f f  1 osses f o r  l o n g  d u r a t i o n  miss so~s ,  

T t h h a  been proposed t h a t  r e f r i g e r a t i o n  be i n v e s t i g a t e d  t o  reduce the h e a t  

l o a d  t o  t h e  t a n k s  and t h e r e b y  m i n i m i z e  b o i l o f f .  

Two t h e m a l  c o n t r o l  systems were e v a l u a t e d  l'n t h i s  a n a l y s i s ,  These systenis  

showed t h e  g r e a t e s t  p romise f o r  i m p r o v i n g  s t o r a g e  l i f e  and i n c l u d e :  

o  An open c y c l e  themodynamic  ven t  system w i t h :  

o a  r e f r i g e r a t i o n  system f o r  p a r t i  a1 hydrogen r e l  i q u e f a c t . i o n  loca ted  

a t  t h e  hH2 t a n k  

o  r e f r i g e r a t i o n  a t  t h e  LH2 t a n k  - vapor  coo led  s h i e l d  f o r  in tegra ted  

and non- i  n t e g r a t e d  tank  des igns  t o  reduce b o i l  o f f  

o A c l o s e d  system w i t h  d i r e c t  r e f r i g e r a t i o n  a t  t h e  LH2 t a n k  vapor-cooled 

s h i e l d  t o  e l i m i n a t e  b o i l o f f  

F o r  s t o r a g e  tank  des igns  u t i l i z i n g  a c t i v e  coo le rs ,  c a r e f u l  des ign  o f  the p a s s i v e  

the rma l  c o n t r o l  s y s t  ern i s  necessary  t o  a c h i  eve t h e  o p t i m a l  r e f r i  g e r a t i o n  system 

p e r f o m a n c e  and m in ima l  o v e r a l l  t h e r m a l  c o n t r o l  sys tem mass, 
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I n d i  vidua' i  subsystems must  be i n t e g r a t e d  f u n c t i o n a l  l y  and s t r u c t u r a l  l y  t o  f o r m  

an operab le  p r o p e l l a n t  r e l i q u e f i e r .  The l i q u e f a c t i o n  equipment i n  t h i s  sche- 

matic i r ~ c l u d e s  t h e  r e f r i g e r a t o r s  (ex., r e v e r s e d  B r a y t o n ) ,  t h e i r  d r i v e  motors,  

and l a r g e  space r a d i a t o r s .  B o i l o f f  f r o m  t h e  l i q u i d  hydrogen and l i q u i d  oxygen 

s t o r a y e  vesse l  s i s  r e c y c l e d  t h r o u g h  t h e  r e f  r i g e r a t i o n  equipment where re1 i q u e -  

fac t : ion  occurs .  However, t h e  b o i l  o f f  r e 1  i q u e f a c t i o n  process r e q u i r e s  r e f r i  ger-  

a t o r  o p e r a t i o n  a t  c r y o g e n i c  temperatures ,  

OPEN CYCLE-REL QUEFACT 

R A D I A T O R  

J-r  ) 
V E N T  

ELECTRICAL POWER 

- LIQUID HYDROGEN REQUIRES LOW TEMPERATURE 
REFRIGERATOR OPERATION 

F i g u r e  1 

I n  the p r e s e n t  s tudy ,  a  reve rsed  B r a y t o n  c y c l e  u n i t  was b a s e l i n e d  f o r  t h e  

p r o p e l  l a n t  p rocesso r .  The B r a y t o n  c y c l e  s e f r i  g e r a t o r  was s e l e c t e d  o v e r  S t e  r- 

l i n g ,  W u i l l e u m i e r  and o t h e r  c y c l e s  because i t  has t h e  l o w e s t  w e i g h t  and volume 

a t  t h e  h i g h e r  power r e f r i g e r a t i o n  r e q u i  r e w n t s ,  I t  uses gas b e a r i n g  t u r b o -  

machinery,  r e s u l t i n g  i n  h i g h  c y c l e  e f f i c i e n c y ,  l o n g  l i f e  and h i g h  re1 i a b i l i t y .  

Two r e f r i  g e r a t i o n  s tages  a r e  r e q u i  r e d  f o r  hydrogen I i q u e f a c t i o n .  

A summar.y o f  t h e  e s t i m a t e d  l i q u e f a c t i o n  performance capabi  1 i t y  used f o r  f i n a l  

p rocesso r  s i z i  ng i s  shown. C u r r e n t  r e f r i g e r a t i o n  systems c o u l  d  p r a c t i  a1 l y  



r e l i q u e f y  o n l y  a  percentage o f  t h e  t o t a l  b o i l  o f f  f r om an OTV p r o p e l  l a n t  s t o r a g e  

depot  tank .  

U n l e s s  m o d i f i c a t i o n s  a r e  made t o  t h e  tank  d e s i g n  ( w i t h  a d d i t i o n  o f  rlefrigerated 

o r  n o n - r e f r i g e r a t e d  vapor c o o l e d  s h i e l d s )  i t  would  appear t h a t  r e 1  i q u e f a c t i o n  

systems may n o t  be as a t t r a c t i v e  f o r  m i n i m i z i n g  p r o p e l l a n t  b o i l o f f ,  i j s  a l t e rna -  

t i  ve the rma l  c o n t r o l  system designs.  

ELECTRIRL POMEW REQUIREMENT FOR HYDROGEN 
RELIQUEFACTION 

- TURBO BRAYTON 

REFRIGERATOR 

E L E C T R I C A L  POWER REQUIREMENT - W A I T S  

F i g u r e  2 

The c r y o g e n i c  s t o r a g e  system, d e s c r i b e d  i n  t h e  p r e s e n t  s tudy,  i s  f o r  o r b i t a l  

l o n g - t e r m  s t o r a g e  o f  s u b c r i t i c a l  l i q u i d  cryogens.  The system cons i i s t s  o f  a 

p r e s s u r e  vesse l  c o n t a i n i n g  t h e  s a t u r a t e d  l i q u i d  cryogen, a  s t r u c t u r a l  s u p p o r t  

system, m u l t i  l a y e r  i n s u l a t i o n  (MLI) ,  and a  vapor -coo led s h i e l d  ( V C S )  w i t h  a 

h e a t  exchanger, 



ijse cf a vapor -coo led s h i e l d  i n t e g r a t e d  w i t h  a  r e f r i g e r a t o r  p e r m i t s  o p e r a t i o n  

OF t h e  r e f r i g e r a t o r  a t  t empera tu res  h i g h e r  t h a n  20°1(, t h e r e b y  o b t a i n i n g  a  

masked improvement i n  c o o l e r  e f f i c i e n c y ,  

Two the rma l  c o n t r o l  open c y c l e  systems were ana lyzed,  These systems were e v a l -  

u a t e d  f o r  t h e i r  a b i l i t y  t o  reduce b o i l  o f f  1 osses w h i l e  m i n i m i z i  ng t h e i r  env i  ron-  

menta l  impact .  The systems i n c l u d e  i n t e g r a t e d  and i ndependent L02/LH2 t h e r m a l  

c o n t r o l  systems. 

OPEN CYCLE - COOLED SH 

- PERNITS REFRIGERATOR OPERATION A T  HIGHER 
TEMPERATURE 

- TWO APPROACHES 
- INTEGRATED L02-LH2 THERMAL CONTROL 
- IHDEFENIDEk4T l 02-LH2 THERMAL COHTROL 

F i g u r e  3 

F o r  a g i v e n  l o c a t i o n ,  t h e  s h i e l d  t e m p e r a t u r e  can be o p t i m i z e d  t o :  

o rni n i m i z e  t h e  combi n a t i o n  o f  t he rma l  c o n t r o l  system, t o t a l  p r o p e l  l a n t  

i ind tankage  mass. 



In  t h e  accompanying f i g u r e ,  a  s o r p t i o n  r e f r l ' g e r a t i o n  system wh ich  has Deer; 

c o u p l e d  t o  t h e  LH2 and LO2 p r o p e l  l a n t  t a n k s  i s  shown and i s  r e p r e s e n t a t i v e  o f  

an i n t e g r a t e d  the rma l  c o n t r o l  system des ign  f o r  t h e  LH2/LO2 t a n k s ,  The v e n t e d  
@ 

l i q u i d  hydrogen i s  passed ove r  t h e  s u r f a c e  of t h e  f u e l  t a n k  where i d  evapora tes  

and m i  n t a i n s  t h e  tank  tempera tu re  a t  20°K, b e f o r e  e n t e r i  ng an i~?kem-mecli a t e  

h.ia",exckanger, Here, t h e  r e f r i g e r a t o r  w o r k i n g  f l u i d  i s  p r e c o o l e d  t o  28"K, 

"cereby i n c r e a s i n g  t h e  c o o l e r  performance,  The hydrogen leavl 'ng t h e  in te r -  

rnedl'ate h e a t  exchanger wou ld  t h e n  be r o u t e d  t h r o u g h  t h e  hea t  exchanger places  

around t h e  oxygen tank,  b e f o r e  be ing  vented t o  space. The amount of b s i l ~ " f f  

- is  governed by a requirement t o  remove a l l  o f  t h e  l i q u i d  oxygen ' tank h e a t  

1 oad, w i t h  no LO2 v e n t i n g .  

The t a b l e  g i v e s  a  compar ison of  t h e  the rma l  c o n t r o l  sys tem mass and L.H2 b o i 7 o f F  

f o r  t h r e e  the rma l  c o n t r o l  o p t i o n s  f o r  a  15700 Kg (7800 f t 3 )  LH2 OTV s t o r a g e  

tank .  The amount o f  b o i l o f f  wh ich  d i r e c t l y  e v o l v e s  f rom t h e  LW2 tank,,  when 

OPEN CYCLE-INTEGRATED LO2-LH2 TANK THERMFIL 

CONmBdBB 

anr a2 

"\ 

TOTAL THERMAL 
G ~ ~ T R O L  SYSTEW 

COOLING HETNOD MASS LH BOILOFF 
(kg) ?kg/ hv) 

MLI only less than 2E) ,728 

t ~ ~ ~ ~ ~ l ~ ~  COOLER YlTH 2E°K PRECOOLIHC TUS+UCS 1436.3 .3:L4 

TUS+ 111.8 .292 
REFRIGERATOR 

F i g u r e  4 



con f i gu red  f o r  pass ive  coo l i ng ,  w i l l  se rve  as a  basel ine,  Us ing  a  TWS a t tached  

to a 55°K hydrogen tank  s h i e l d ,  a l l  o f  t h e  excess heat  f rom t h e  LM2 and 802 

e a ~ k  can be removed w i t hou t  t h e  need f o r  any a d d i t i o n a l  r e f r i g e r a t i o n  o r  oxygen 

v e n t i n g .  Wi th  t h i s  des ign,  t h e  b o i l  o f f  i s  reduced t o  53  percen t  o f  i t s  o r i g i n a l  

value. Because t h e  system i s  cons t ra i ned  by t h e  r q u i  r e w n t  t h a t  t h e  b o i l  o f f  

be large enough t o  i n t e r c e p t  a l l  o f  t h e  heat  leak i n t o  t h e  LO2 tank, t h e  

a~mownt: o f  kHz b o i l o f f  i s  no t  reduced subs tan t i a ' l l y  by l owe r i ng  t h e  s h i e l d  

t , m p e r a t u r e  t o  20°K and coup l i ng  a r e f r i g e r a t o r  t o  it. However, by l e t t a ' ng  

t h e  tank  r ia l  1 serve as a  20°K vapor coo led  s h i e l d  (VCS), t h e  mass o f  t h e  VCS 

can be @I.iminated. Thus, t h e  t o t a l  thermal c o n t r o l  system mass i s  g r e a t l y  

~ e d u c e d ,  I n  s p i t e  o f  t h e  above e f f o r t s  t o  reduce s t r u c t u r a l  weight ,  t h e  amount 

a f  f l u i d  vented d u r i n g  a  l ong  m iss i on  can be la rge ,  Vent losses  can be g r e a t l y  

reduc4.d by p r o v i d i  ng an independent LH2 tank  thermal  c o n t r o l  system des-i gn, 

I n  order to p r o p e r l y  des ign a  p r o p e l l a n t  tank t h e m a l  c o n t r o l  system, i t  j s  

" impor tan t  t o  assess t h e  impact of va r ious  parameters upon t h e  vapor p n e r a t i o n  

of the cr;yogenic p rope l  l a n t s  s t o red  w i t h i n  t h e  tank, The accompanyi ng f i g u r e  

i l lus ' trates t h e  e f f e c t  o f  va r y i ng  f rom i t s  nominal va lue t h e  magnitude o f  a 

i j i  ven parameter ( i  .e., MLI th ickness,  env i  ronment temperature,  s t r u t  heat l e a k ,  

pipes and pene t ra t i ons  and para /o r thos  convers ion  e f f  i c i e n c y )  upon t h e  eal cu- 

l a t ed  t a n k  heat i n p u t  r e l a t i v e  t o  t h e  tank"  heat i n p u t  us ing  t h e  parameter 's  

nornin31 value, The nominal values represented i n  t h i s  f i g u r e  were obta l 'ned  

f r m  data rep resen t ing  t h e  SOA technology as def ined by M a r t i n  M a r i e t t a  f o r  an 

OMV." The tank  heat  i n p u t s  appear t o  be most s e n s i t i v e  t o  changes f rom noma'nal 

v a l u e s  is7 t he  ML I  t h i c kness  and envi  ronment temperature.  Consequently, a t t e n -  

" 3, Rob-lnson, P o i n t  Design and Technology Assessment, Long Tern  Cryo Storage 

Study ,  F i n a l  Program Review, Sept. 20, 1983, 



t i o n  was focused on t h e  e f f e c t s  of  these two parameters i n  develop jng a t a n k  

thermal  des ign which min imized b o i l  o f f  w i t h i n  t h e  system cons t ra in ts , ,  

LH2 TANK PFtRAMETRIC HEAT INPUT SEHSITIUITY 

NOMINAL V A L U E  
o ml c s o ~ )  

- 50 U\YERS/I?ICH 
- 3 INCHES THICK 

0 SINELE VCS 

VALUE 
MOMXMAL V A L U E  

F i g u r e  5 

Mass and energy conse rva t i on  q u a t i o n s  have been a p p l i e d  t o  t he  sys"c?rn i n  order  

t o  min imize t h e  p r o p e l l a n t  b o i l o f f ,  The accompanying f i g u r e  shows t h e  r e d u d i o n  

i n  b o i l  o f f  f o r  r e f r i g e r a t e d  and non-ref  r i g e r a t d  tank designs versus t h e  bound- 

a r y  temperature r a t i o  TH/Tc. The o p t i m i z a t i o n  s tudy was performed Fo r  an 

CPkiV3, L H 2  t ank  designed f o r  a  t e n  yea r  m iss ion  du ra t i on .  The b o i l o f f  f r o m  

t h i s  tank,  con f i gu red  f o r  pass ive  c o o l i n g  ( u t i l i z i n g  2 inches o f  I'll1 a n d  R C I  

s h i e l d ) ,  served as a  re fe rence  a g a i n s t  which t he  b o i l o f f  from impi-oved tank 

designs were judged, The curves a re  represen ted  success ive ly  f rom t h e  t o p  as: 



i f a non - re f r i ge ra ted  s i n g l e  s h i e l d  tank  which i s  temperature and 

p o s i t i o n  op t im ized  a t  T = 8 7 O K  nd x / t *  = 0.44 

i i )  a m u l t i p l e  s h i e l d e d  tank  (i.e., an i n f i n i t e  number o f  c o o l i n g  s h i e l d s )  

i ii) a r e f r i g e r a t e d  s i n g l e  s h i e l d  tank  which i s  op t im ized  a t  T = 4 5 O K  and 

x / t  = 0.5. 

Here, x l t  rep resen ts  t he  non-dimensional d i s t ance  from t h e  tank f o r  a g i v e n  

sh ie ld  th i~ckness ,  t. An op t im ized  s i n g l e  s h i e l d  r e f r i g e r a t e d  t ank  des ign 

s u b s t a n t i a l l y  reduces t he  b o i l o f f  as compared t o  t h a t  generated f rom s i n g l e  

and mu l t i - . sh i e l ded  n o n r e f r i g e r a t e d  tank  systems, 

REDUCTION IN BOILOFF WITH ENUIRONMEHTAL 
TEMPERATURE R A T I O  

1 SHIELD 
REFRIGERATOR 

ENVIRONMEHTAL TEMPERATURE, f /228(  

Figure 6 

* xJ: rep resen ts  t h e  non-dimensional d i s t ance  from t h e  tank wal l  f o r  a  g i ven  

i n s u l a t i o n  t h i c kness ,  t. 
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Mate r i  a1 techno1 ogy advances and vessel design i n g e n u i b  can reduce p r o p e l  Itas:, 

boz i lo f f  and o v e r a l l  system s t r u c t u r a l  weight .  I n  s p i t e  of these  ~ a f f o r t s ,  t h e  

w e i g h t  o f  f l u i d  vented d u r i n g  a  l ong  m iss i on  can be la rge ,  Consequently, i 

c m p a r i s o n  o f  t h e  r e l a t i v e  performance o f  open and c l osed  c y c l e  thermal con t ro l  

schemes f o r  a  t y p i c a l  p r o p u l s i o n  v e h i c l e  (OMV 3) i s  presented. I t  was assumeci 

t h a t  t h e  mass o f  propel  I a n t  r e q u i r e d  a t  t h e  end of any g iven  missilon was he1 d 

constant ,  I n  a d d i t i o n ,  t h e  s h i e l d  temperature and p o s i t i o n  were op.tiimized as a 

f u n c t i o n  o f  m iss ion  du ra t i on ,  

The launch weight  of a tank con f igu red  f o r  open c y c l e  pass ive c o o l i ~ ~ t  

u t i l i z i n g  two inches of MLI i s  shown t o  exceed t h e  launch weight  of' t h e  cl2r;o:: 

c y c l e  system w i t h  a c t i v e  c o o l i n g  a t  t h e  20°K tank w a l l  ( r e f e rence  syshem) f:,r 

m iss ion  d u r a t i o n s  g rea te r  t han  1/2  year.  F u r t h e r m r e ,  an open c y c l e  thesnlal 

c o n t r o l  system w i t h  an a c t i v e l y  coo led s h i e l d  i s  shown t o  be prefeinab?e eo t h e  

r e fe rence  system f o r  m iss ions  l ess  t han  1.6 years,  Beyond t h i s  t i m e ,  * t h e r e  

RELATIVE PERFORMANCE COMPARISON OF 8PEH 
AND CLOSED CYCLE WHERMAL CONTROL SCHEMES 
FOR SPACE STATION O T V  STORAGE TANK 

F igu re  7 



i s  ;a s u b s t a n t i a l  mass savings t o  be gained by employing a  c losed  c y c l e  system 

w i t h  d.i irecl r e f r i g e r a t i o n  a t  t h e  tank  w a l l .  F i n a l l y ,  t h e  use of a c t i v e l y  coo led  

shie?  ds  w i  1 l enhance t h e  o v e r a l l  thermal  c o n t r o l  system performance. 

As an a1l:ernative t o  a c t i v e l y  cooled, open c y c l e  systems, a r e f r i g e r a t i o n  

system can be employed t h a t  p rov ides  d i r e c t  c o o l i n g  o f  bo th  c ryogen ic  tanks,  

Figure 1 shows a h y b r i d  LaNi2 charcoal  n i t r o g e n  (C/N2) p r o p e l l a n t  tank 

d i  res.t c o o l i n g  r e f r i g e r a t i o n  scheme. A l t e r n a t i v e  designs c o u l d  u t i l i z e  S t i r -  

l i  ng, Bray ton  and Veu i l  l e m i e r  r e f r i g e r a t i o n  systems. 

CLOSED CYCLE THERMAL CONTROL 

HYRROCEH TkHt 
REFRIGERRTION S Y S l E l  

Figure 8 

A p r e l  i rn inary i n v e s t i g a t i o n  was made o f  t h e  above r e f r i g e r a t i o n  system design 

to determine t h e  o v e r a l l  c l  osed c y c l e  r e f r i g e r a t i o n  system mass. An op t im ized  

shie: d tempera tu re  and l o c a t i o n  were found which min imized t h e  overa l  l r e f r i g -  

erathon system mass. F o r  mechanical coo le r s ,  t h e  op t im ized  s h i e l d  temperature 



d- and p o s i t i o n  i s  94OK and x / t  = 8,5 ,  By a d d i n g  a r e f r i g e r a t e d  sh7e"Jd  to d n  

i n s u l a t e d  t a n k  (wh ich  u t i l i z e s  a 20% c o o l e r  t o  i n t e r c e p t  h e a t  a t  t h e  t~l-.; 

wall ) ,  t h e  o v e r a l l  ref r igera"c ica~1 mass was reduced by a p p r o x i m a t e l y  55% f o r  rr,@ 

mechanica l  c o o l e r s ,  

An assessment o f  t h e  space s t a t i o n  p r o p e l l a n " c h e r m a 1  c o n t r o l  system mass anc 

h e a t  l o a d s  has been made, c o r r e s p o n d i n g  to t h e  miinimum and rnaxim~im s l z e  pmo- 

p e l l a n t  t a n k s  wh ich  c o u l d  be mai17tairped on space s t a t i o n ,  The Turbo Brdyt:' 

system was used "c o q p r s e n t  a  t y p i c a l  mchanica l  r e f r l ' g e r a t i o n  s,ystw;, vqh~ :li 

was a t t a c h e d  t o  a  vapor-coo' led s h i e l d ,  The r e f r i g e r a t i o n  system mass ~noai:ma~$ 

power slapply, energg/ s t o r a g e  and r a d i a t o r ,  The mass o f  t h e  vapor-coolecs sbre  1 

was n o t  i n c l u d e d  i n  t h e  a n a l y s i s  and t h e  s h i e l d  w e i g h t  c o u l d  became quite s ~ : -  

s t a n t i a ? ,  p a r t i c u l a r l y  i f  t h e  mass o f  t h e  t u b i n g  and s u p p o r t s  a r e  accociwtes 

EFFECT QF SHIELD UPOH REFRIGERATION 
3 
\ 

SVSKEII PIASS 
$$D 

24 

HOT SHIELDED 

SHIELDED 

TURBO BRAYTOR REFRIGERATION SYSTEM 

Figure  9 

9s 
x l t  rep resen ts  t h e  won-dimensional d i s t a n c e  f r o m  t h e  tank  w a l l  f o r  a g ive . :  

i n s u l a t i o n  t h i c k n e s s ,  t ,  



for, The s h i e l d  masses f o r  t h e  onboard p r o p u l s i o n  and OTV tank farm s to rage  

t a n k i t s  c o u l d  c o n s e r v a t i v e l y  reach a  maximum o f  24,5 k g  and 1340 kg, r e s p e c t i v e l y ,  

A l though  these r e f  r i g e r a t i o n  systems represents n o o n t r i v i a l  mass pena l t y ,  

t h e i r  employment can s u b s t a n t i  a1 l y  reduce t h e  mass o f  accumulated b o i l  o f  4: 

expended over  t h e  l i f e  o f  a  long  d u r a t i o n  miss ion.  T h i s  t r a n s l a t e s  i n t o  a 

subs tan t i  a1 sav i  ngs i n  i n i t i  a1 wet system mass t r a n s p o r t a t i o n  costs ,  

S P A C E  S T A T I O N  P R O P E L L A N T  T H E R M A L  

C O N T R O L  S Y S T E M  N A S S  A N 0  H E A T  L O A D S  

- Shield mass not inlcluded - Sized for Turbo Brayton System 

F igu re  10 

Inc reas in lg  t h e  s torage l i f e  o f  s t a t e  o f  t h e  a r t ,  pass ive  vented and nan-vented 

propel1an.t tanks  i s  e s s e n t i a l  i n  o rde r  t o  s a t i s f y  t h e  r e q u i r e m n t s  of l o n g  

d u r a t i o n  miss ions  w i t h i n  economic cons t ra i n t s .  F o r  a  vented p rope l  l a n t  s torage 

t ank  design, a c t i v e  c o o l e r s  may be employed f o r  propel  larat r e l i q u e f a c t i o n ,  o r  

f o r  i n t e r c e p t i n g  hea t  along a  vapor-cooled s h i e l d  i n  o r d e r  t o  reduce t h e  heat  

load t o  t h e  tank.  R e l i q u e f a c t i o n  systems a re  shown t o  n o t  be a t t r a c t i v e  fo r  

minimizi reg p rope l  ? a n t  b o i l o f f  i n  an unsh ie lded  tank desl'gn. Ca re fu l  thermal 

design i s  necessary t o  ach ieve t h e  minimum p o s s i b l e  b o i l o f f  w i t h i n  t h e  system 

c o n s t r a i n t s .  Independent s torage tank thermal c o n t r o l ,  u t i l i z i n g  a c t i v e l y  

ref'ri gerated vapor-cooled s h i e l d s  f o r  vented propel  l a n t  s torage,  r e s u l t s  i n  a 



s i g n i f i c a n t  r e d u c t i o n  i n  b o i l  o f f  1 oss ove r  a1 t e r n a t i v e  vented s t o r a g e  t a n k  

system designs. However, open c y c l e  systems may n o t  be economica l ly  a t t r a c t i \ i e  

f o r  long- term storage.  The maximum f l u i d  and vessel we igh t  savings occurs  -if 

t h e  r e f r i g e r a t i o n  capac i t y  i s  chosen t o  match t h e  vessel  heat  leak, t he reby  

a1 low ing  s to rage  w i t h o u t  vent ing.  Use o f  r e f r i g e r a t e d  s h i e l d s  has been shown 

t o  s i g n i f i c a n t l y  improve t h e  performance o f  mechanical coo le r s  i n  non-vented ,  

as we1 1 as vented, s to rage  tank designs. T h i s  t ype  o f  s torage tartk, thema1 

c o n t r o l  system design, r e s u l t s  i n  a s i g n i f i c a n t  r e d u c t i o n  i n  re l r r - ige ra t io~n  

system mass. 

RELIQUEFACTION SYSTEMS ARE NOT ATTRACTIVE 
FOR MINIMIZING PROPELLANT BOILOFF 

OPEN CYCLE SYSTEMS MAY HOT BE ECONOMICALLY 
ATTRACTIVE FOR LONG TERM STORAGE 

A NUMBER OF REFRIGERATION SYSTEMS ARE 
AVAILABLE TO ASSIST I N  THE LONG TERM 
STORAGE OF CRYOGENIC PROPELLANTS 

SHIELDS CAM SIGNIFICANTLY INPROWE THE 
PERFORMANCE OF MECHANICAL COOLERS 
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PROPELLANT TRANSFER: ATTACHED DEPOT 

Ralph N. Eberhard t  
M a r t i n  M a r i e t t a  Denver Aerospace 

P r o p e l l a n t  t r a n s f e r  a t  a n  a t t a c h e d  depo t  i n v o l v e s :  1) r e s u p p l y  
t a n k e r s  ( d e d i c a t e d  l a u n c h  from t h e  ground o r  scavenging from t h e  
E x t e r n a l  Tank) t o  r e s u p p l y  t h e  depo t :  2 )  d e p o t  s t o r a g e  and supp ly  
t a n k s  ( a t t a c h e d ,  f r e e - f l y e r  o r  t e t h e r e d )  from which l i q u i d  hydrogen 
and l i q u i d  oxygen a r e  t r a n s f e r r e d  t o  f i l l  t h e  space-based OTV; and 
3) t h e  space-based OTV which i s  r e s u p p l i e d  w i t h  cryogens  from t h e  
d e p o t .  Liquid  s t o r a g e  and s u p p l y ,  the rmal  c o n t r o l  and t r a n s f e r / r e s u p p l y  
r e q u i r e m e n t s  f o r  a n  a t t a c h e d  depot  are l i s t e d ,  and t e c h n o l o g i e s  d e f i n e d .  
The s p e c i f i c  f l u i d  management e lements  and approaches  f o r  a n  a t t a c h e d  
depo t  a r e  d e f i n e d .  The Cryogeni-c F l u i d  Management F a c i l i t y  (CFMF) 
S h u t t l e  a t t ached-pay load  t e s t  bed,  schedu led  f o r  a  mid-1988 f i r s t  l aunch ,  
w i l l  p r o v i d e  much of t h e  needed technology.  

I>RKCEDING PAGE BL- NOT F%2mT 

Preceding page Mann 
- -  -- 



Three elements are involved in the propellant transfer operation associated with an 
attached depot -a resupply tanker, a space station depot and a user syste~ri such as a 
space-based OTV. The technologies that are involved for each are shown on this chart. 
Liquid storage and supply is an element of each one of these systems as is thermal control. 
For the resupply tanker the thermal control period is relatively short, on the order of 
several days. For the space station depot the thermal control is relatively long, on the 
order of several months, perhaps 90 days or 180 days. For the space-based OTV the thermal 
control requirement is of intermediate length, perhaps on the order of several weeks. The 
space station depot not only must be resupplied by the resupply tanker, but in turn is the 
supply source for transferring propellant to the space-based OTV. The space station depot 
must be resupplied and also must be a supply source. For the OTV, resupply to initiate the 
next mission is accomplished prior to the mission. Fluid transfer is key to the space basing 
of OTVs. 

ON-OR0 I T  CRYOGENIC FLU I D  MANAGEMENT 

RESUPPLY TANKER (RT)  
(DEDICATED OR STS 
SCAVENGING) 

0 L I Q U I D  STORAGE AND 
SUPPI.Y 

0 THERMAL CONTROL 
(RELATIVELY SHORT 
TERM - SEVERAL DAYS) 

SPACE STATION DEPOT (SSD) SPACE-BASED OTV (SB OTV) 
(ATTACHED, FREE FLYER OR 
TETHER ) ---.---A 

0 L I Q U I D  STORAGE AND 
SUPPLY 

0 THERMAL CONTROL 
(RELATIVELY LONG 
TERMN SEVERAL MONTHS) 

0 RESUPPLY/TRANSFER 
CAPAB I L  I TY INCORPORATED 
I N  DESIGN 

Figure I 

0 L I Q U I D  STORAGE AND 
SUPPLY DURING MISS ION 

0 THERMAL CONTROL 
( INTERMEDIATE TERM 

SEVERAL WEEKS) 

0 RESUPPLY 10 I N I T I A I E  
NEXT MISS ION - FLL l lD  
TRANSFER CAPABIL I1 Y 
KEY TO SPACE-BAS INS 



The functions that make up cryogenic f l u i d  management are liquid storage a n t  supply 
thermal control and fluad transfer and resupply, Liquid storage and supply Involves 11q 
acquisition devices that acquire the liquid in low-g, and retain it in a posaercn to be 
transferred as single-phase liquid using capillary or fine-mesh screen acqussltion d e v i c e  . 
'rf-~errmaf control can either be passive or active, and fluid transfer involves I-eci?iver ts 
as well as a transfer Irne, 

DEFINITION - IN-SPACE CRYOGENIC FLUID MANAGEMENT ( i f : < )  
--,, 

- ACQUISISION/REIENTION 
- S I NCiLE PHASE L. I QIJ 1 LI EXPULSION 

@ TIIERMAL CONTROL (TC) 

- PASSIVE SYSTEMS 
- ACTIVE SYSTEMS 

- RECEIVER TANK 
- TRANSFER LINE 

Figure  2 

T h i s  chart lists some of the fluid management requirements for an attachcad or f r ~ e - - r ,  I-: 

depot, Fluid acquisition devices are designed to feed single-phase liquid down R3 low 
iesiduals, on the order of several percent of the loaded volume. Relatively i l l g b  v s l ~ ~ r r e e r  
,!low rakes may be required to transfer propellant to an OTV in a several-houn icra~isfer 
ps - s iod ,  Ide would like not to have an imposed gravity or settling as part of t l iac? : rzs ,s te  
o p k r a t i r r n  because some systems may be limited by having special low-gravity reqtil-emc-.;t- 
'i r a i  depot must incorporate adequate meteoroid protection. A key techno1 ogy ns t111- a b ~ I  k\ . 
g q ~ ~ p p  the mass of 1 iquid in the supply and receiver systems so we can determln~ wrien a t  s 
C L G P  to stop the resupply operation. Two particularly important requirements rnvulie 
concarnlnant or particle buildup s n  the tank over time when we are running basically a 
filling-station type operation, and the impact that slosh forces generated 11y i l c j r ~ i i !  rnadra, 
u ~ e h ~ n  the tonlc systems may have upon attitude control. 

The purpose of the thermal control system is to minimize boil-off losses, Some s c  
i a v e  indicated a 90-day resupply time period i s  a reasonable operational crrter:or, ID 

c a s e  the thermal control syscem should be designed to provide up to 180 days lor a 
contingency storage period assuming the resupply launch does not occur as planned, One 
a~caactive thermal control approach is to integrate the entire hydrogen-oxygen system by 

~i -g  a coupled heat exchanger which allows the boiloff from the hydrogen sys tern t o  t i n e r ~ r a  i 
c ' r i d i t i o n  the oxygen system to prevent or minimize the boiloff of oxygen. 

From a f l u i d  transfer and resupply technology standpoint, the capacility is ner?ded t o  L c - j  

i3artially full tanks. This is consistent with the concept of making the resupply rperat l t  i., 



some,dhat s l m l  ' l a r  t o  a  f i l l i n g  s t a t i o n  o p e r a t i o n ,  where  we would n o t  empty t h e  tarllts e v e r y  
t rme we were  r e a d y  t o  r e f i l l ,  b u t  m e r e l y  t o p  a  t a n k  t h a t  had a l r e a d y  been  f i l l e d  and 
p a r t i a l l y  u s e d .  Mass g a g i n g  i s  a g a i n  a  v e r y  key  t e c h n o l o g y  when we c o n s ~ d e r  how we a r e  g o l n g  
t o  c o n t r o l  t h e  o p e r a t i o n s  o f  t r a n s f e r r i n g  f l u i d  f rom one  t a n k  t o  a n o t h e r ,  k n o w ~ n g  when we 
have comple ted  t h e  t r a n s f e r  p r o c e s s .  I t  i s  i m p o r t a n t  t h a t  we min imize  r a p i d  v e n t i n g  i n  t h e  
v i e l n i t y  o f  t h e  s p a c e  s t a t i o n  o r  o t h e r  p a y l o a d s .  I t  may b e  t h a t  s e p a r a t e  c a t c h  t a n k s  a r e  
r e q u a r e d  f o r  r e l i q u e f a c t i o n  i f  v e n t i n g  o f  v a p o r s ,  i n  p a r t i c u l a r  n o n - c o n d e n s i b l e s ,  i s  damaging 
t o  pay load  e l e m e n t s .  Resupply  on 90-day i n t e r v a l s  h a s  a l r e a d y  been  d i s c u s s e d ,  Diagnostics 
f o r  e f f i r a e n t  o p e r a t i o n a l  c o n t r o l  and s a f e t y  w i l l  a l s o  b e  a  p a r t  o f  any  t r a n s f e r  sys tem.  

ATTACHED OR FREE-FLYER DEPOT F L U I D  MANAGEMENT REQUIREMENTS 

e L I Q U I D  STORAGE AND SUPPLY 
- SINGLE-PHASE L I Q U I D  FEED TO LOW RESIDUALS ( - 2  PERCENT) 
- RELAT IVELY  H IGH VOLUMETRIC FLOW RATES 

( F I L L  OTV I N  SEVERAL HOUR TRANSFER OPERATION) 
- NO IMPOSED GRAVITY/SLTTLING REQUIREMENTS 
- INCORPORArE APrQUATE METEOROID PROTECTION 
- GAUGE MASS TO DETERMINE T IME FOR RESUPPLY 
- DESIGNED FOR ADEQUATE SUPPLY PRESSURE TO TRANSFkR FILIJII, 
- M I N I M I Z E  CONTAMINANT AND P A R T I I I '  BUILD-UP I N  TANK OVER T IME 
- M I N I M I Z E  SLOSti AND I T S  IMPACT ON S P A ( L  STATION ATTITUDE CONTROL 

o THERMAL CONTROL 
- PROVIIIE 1 8 0  DAYS OF STORAGE, MAINTA IN ING DESIRED SATURATED CONDITIONS 

( Q U A L I  I Y  OF L I Q b I D  WITH T I M E )  
- M I N I M I Z E  BOILOFF LOSSES 
- INTEGRATE THERMAL CONTROL OF ENT IRE  HYI)ROGEN/OXY6EN SYSTEM (COUPLED HEAI  

EXCHANGER APPROACH) 

@ F L U I D  TRANSFER/RESUPPLY 
- PROVIDE C A P A B I L I T Y  TO TOP PARTIALLY  FUL!.. TANKS 
- GAUGE MASS/METER MASS FLOW TO CONTROL OPERATIONS 
- M I N I M I Z E  NEED FOR RAPID  VENTING INTO SPACE OF S I G N I F I C A N T  QUANTIT IES  O F  

VAPOR ( INCLUDING NON-CONDENSIBLESi. MAY REQUIRE SEPARATE 'CATCII TANKS' OR 
RELIQUEFACTION.  

- RESUPPLY ON 90-DAY INTERVALS 
- INCORPORATE DIAGNOSTICS FOR LEAK DETECTION, OPERATIONAL CONTROLS, ETC. 

F i g u r e  3 

T h i s  c h a r t  shows a  d e p o t  c o n c e p t  w i t h  a  c o u p l e d  t a n k  thermodynamic v e n t  s y s t e m .  I n  t h i s  
c o n c e p t  we r e f r i g e r a t e  a t  t h e  l i q u i d  hydrogen  t a n k  vapor -coo led  s h i e l d .  C i r c u l a t o r s  and a 
r a d i a t o r  pane l  a r e  i n c l u d e d  a s  p a r t  o f  t h e  h e a t  r e j e c t i o n  sys tem.  Hydrogen i s  f e d  a s  

s i n g l e - p h a s e  f l u i d  from t h e  t o t a l  communicat ion a c q u i s i t i o n  d e v i c e ,  throrlgh a n  e x p a n d e r  where  
it becomes two-phase f l u i d ,  and i n t o  a thermodynamic v e n t  h e a t  e x c h a n g e r .  The h e a t  e x c h a n g e s  
i s  a t t a c h e d  t o  t h e  vapor -coo led  s h i e l d .  Once t h e  f l u i d  r e a c h e s  t h e  end o f  t h e  h e a t  e x c h a n g e r  
on the vapor -coo led  s h i e l d ,  i t  i s  r o u t e d  t o  a  h e a t  e x c h a n g e r  t h a t  c o u l d  e i t h e r  b e  on t h e  
' l i q d i d  oxygen s u p p l y  t a n k  o r  on t h e  s h i e l d  a round  t h e  t a n k .  The hydrogen  i s  t h e n  v e n t e d  
o v e r b o a r d  o r  r e l i q u i f i e d .  By c o u p l i n g  t h e  h e a t  e x c h a n g e r  o f  t h e  hydrogen  t a n k  t o  t h e  oxygen 
t a n k  w e  can min imize  o r  p r e v e n t  t h e  b o i l o f f  o f  oxygen.  
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Figure 4 

A prioritization of the cryogenic fluid management technologies relative to the r e s u p 3 , ;  
tanker, the space station depot and the space-based OTV was performed. This claarl: s h o u s  el e 
various categories that were considered and a description of the prioritization c r i t e r i c ~ ~  
each .  Category one Includes technologies that must be addressed as an enabling tachnalcg\ 
Category two contains techrao3ogy items which must be addressed for efficient design, s r ~ r  : 
minimizing weight, minimizing losses of fluid such as boiloff losses, or rnaxr i i~bzrng  
performance, Category three includes techno1 ogies which provide an intermeciaate p e r f o s ~ - ~ > -  c 
gain, Categories four and five represent technology categories which can either be d e s n g  L 

a rouod  with minimum impact or are not required for the application. 

R E Q U I K E M E N T S  P R l O R I T I Z A T I O N  C A T E G O R I E S  

CATEGORY -- - - -. - 

I 

2 
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Figure 5 
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T h e  liquid storage and supply technology priority assessment is shown for the resupply 
ranker, the space station depot, and the space-based OTV. For fluid management systems 
direct outflow with settling for the space-based OTV is an enabling technology. A total 
conrnunicakion device which allows contact of the liquid in all locations of the tank is an 
enabling technology for the space station depot because settling would be disruptive to the 
stabilization of the space station. Autogenous pressurization is an enabling technology for 
the depot because the interjection of a non-condensible pressurant, such as helium, to assist 
in transferring the cryogen from the space station to user tanks, is disruptive to 
resupplying the depot as a partially full tank. The filling of a partially full tank is 
discussed i n  more detail on a later chart that addresses the transfer/resupply priority 
assessment, Mass gaging and instrumentation are key technologies for the resupply tanker and 
t h e  depot because of the control required for the transfer process. 

L I Q U I D  STORAGE/SUPPLY TECHNOLOGY REQUIREMENTS P R I O R I T Y  ASSESSMENT 
w 

@ F L U I D  MANAGEMENT SYSTEMS 
ACQU IS IT ION/EXPULSION SYSTEMS 

DIRECT OUTFLOW WITH SETTLING 
TOTAL COMMUN [CAT ION DEVICE 
P A R T I A L  COMMUNICATION DEVICE 

PRESSURIZATION SYSTEMS 
AMBIENT HELIUM 
CRYO-COOLED HELIUM 
AliTOGENOlJS 

SLOSH CONIROL.  SYSTEMS 

8 ADDIT IONAL  TECHNOLOCY ISSUES 
START TRANSIENTS 
OUTAGE/PULLTHROUGH 
MASS GAGING/INSTRUMENTATION 
NON-CONVENTIONAL IANKAGk 
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APPLICATIONS 
R T SS DEPOT -- - - - SB OTV - 



A total communication acquisition device is shown schematically in this chdst, F ~ n e - ~ e s  
screen channels form the total communication device, allowing connnunication w k t L  a l i  r e g r x s  
of the tank. In low-g the liquid tends to fill in between the tank wall and tile c h a n n e  , aii 

therefore allows expulsion to a very small residual. Channel devices simlIas to this Eacivc 

been considered for applications to tanks as large as 14-foot in diameter. Evciz w i ~ n  t h e  S ~ L ~  
surface tension of liquid hydrogen good expulsion efficiencies are obtainable, 

F i g u r e  7 

The technology ~riority assessment for thermal control is shown here. For t h e  r e s h p r A y  
tanker, tl7ermal protection systems that will allow efficient ground operation a n d  l i g t t ~ & u i 2 ~ (  'IE. 

tankage for launch operations would include purged MLI and foam underneath the purged Mti* 
The foam underneath the purged MLI allows gaseous nitrogen rather than gaseous r l e a i ~ m  L'c k c  

used as the purge gas and this decreases the heat flux by about a factor of six w l i i l t .  the 
tanks are loaded and still on the ground, Internal and external heat exchangers as par:  0 1  

thermodynamic vent systems are key technologies in terms of effective thermal cnniral arLd 
minimizing boil off 1 osses. 

Some additional thermal control technology issues are listed here. One s rnpor t an t  r s s t s ~  
is the degradation that may occur over time with the insulation system. Znsuiateua can pi? 

designed to a prescribed requirement and if that insulation degrades significdntly over iwc 

severe thermal performance impacts will result.. It is important to pay attentdon Lo 
contamination, meteoroid impacts, atomic oxygen degradation on the insulation p e a f o r a a ~ a c ~ ,  
Thermal conditioning of the outflow is also important to preserving the quality or condrfso7 
of the fluid that is being transferred from the resupply tanker into the depot or from Bl>e 

depot into the space-based OTV,  



THERMAL. CONTROL TEChNOLOGY REQUIREMENTS P R I O R  I TY ASSESSMENT - 
APPL 1 CATIUMS 

P T  - S S  DEPOT y3.i!'l.V 
6 THERMAL PROTECTION SYSTEMS 

VACUllM J A C K E T / I  NSI ILAT I O N  (LIEWAR :I 4 3 5 
PIIHGED - M L I  1 5 3 
FOAM - ML. l  1 3 5 

O THERMAL MANAGEMENT SYSTEMS 
THERMODYNAMIC VENT SYSTEMS 
- I N T E R N A L  HEAT EXCHANGER 3 1 1 
- EXTERNAL HEAT EXCHANGER 3 1 1 

( I N C L U D I N G  VAPOR-COOLED S H I E L D )  
- COUPLED HEAT EXCHANGER 3 3 2 

( V t N T  FREE STORAGE) 
- PARA-TO-ORTtIO CONVIrRSION 3 2 2 
D I R E C T  TANK V E N l  I NG W I TI{ S E l  T L  I NG 5 5 2 
REFR I f i E R A T  I O N  SYSTEMS 5 3 < 

O ADDIT IOEIAL TECHNOLOGY I S S U E S  
I N S U L A T I O N  R E U S A B I L I T Y  (NON-DIfWAR) 1 4 2 
I N S U L A T I O N  DEGRADATION ( W I T H  T I M E )  5 1 1 
SUPPORTS/LINES/PENETHATION HEAT L E A K S  2 2 2 
THERMAL ACOUSTIC OSC I L L A T  I O N S  3 2 i 
CONVECTION CONTROL 4 2 2 
THERMAL C O N D I T I O N I N G  OUTFLOW 1 3 1 

F i g u r e  8 

T h i s  c h a r t  i l  l u s t r a t e s  s c h e m a t i c a l l y  t h e  t a n k e r  c o n c e p t  w i t h  a  t o t a l  commtinicat i o n  1 i q u i d  
a c q u i s i t i o n  d e v i c e  i n  t h e  s u p p l y  t a n k ,  a n d  a  d e p o t  wh ich  would a l s o  c o n t a i n  a  t o t a l  s c r e e n  
a c q u i s i t i o n  d e v i c e .  F o r  t h e  d e p o t  we h a v e  shown t h e  hydrogen  a u t o g e n o u s  p r e s s u r a n t  s y s t e m  
wh ich  would b e  p r e f e r r e d  c o n s i d e r i n g  t h e  t o p p i n g  o f  a p a r t i a l l y  f u l l  t a n k  by a  r e s u p p l y  
t a n k e r ,  We w o u l d  t h e n  p r e c l u d e  t h e  p r o b l e m  o f  h a v i n g  t o  v e n t  n o n c o n d e n s i b l e s  t o  p r e c o n d i t i o n  
t h e  t a n k  and iower  t h e  p r e s s u r e  t o  a l l o w  t h e  t r a n s f e r  p r o c e s s  t o  o c c u r .  The r e s u p p l y  t a n k e r  
 odd u s e  a h e l i u m  p r e s s u r a n t  s y s t e m  t o  e x p e l  l i q u i d  i n  t h e  t a n k s  s i n c e  i t  w i l l  b e  t a k e n  back  
t o  the ground, e x p e l l e d  and  r e c o n d i t i o n e d  f o r  f i l l i n g  f o r  t h e  n r x t  r e s u p p l y  o p e r a t i o n .  

FLUID TRANSFER/RESIJPPLY - TANKER T O  DEPOT 
w 

F i g u r e  9 



This chart depicrs the depot and the space-based OTV, Again, the depot has d spher~c 
tank with a total communication device and a gaseous hydrogen autogenous pressciraalt s y s t c n -  
The space-based OTV would likely be non-spherical rank similar to the cylindr~cal tank shc\rl l~* 
possibly having a start basket or partial acquisition device for fluid managerner-it, EEr.nae~*is  
o f  c h e  system would again consist of mass gages and mass metering devices to ailow us La 

control the operation and status when we had filled the system. The space-baseti OTV w o ~ ~ l ?  
likely have some kind of chill and fill system that would allow chilldown of t h e  initiall. 
dry arid empty tank prior to the filling of the tank, The filling of the tank w o u l d  l e r ce iy  ' 1  

accomplished by what's called a no-vent fill operation. 

I- 

ijASk1:: 

(:I1 I I I 'IOT<i4 

V l , N  I 

MASS I'LiJId 
M>ISi:R 

L I N E  i i X  
"i>;J'r 

SPACE-BASEL1 O ~ i V  

Figu re  10 



This chart shows fluid transfer/resupply technology requirements. If we have initially 
empty tanks, as we might have with a space-based OTV, then we would have to go through a 
chilldown prior to accomplishing a no-vent fill. For the space station depot we would likely 
be topping a partially full tank. No-vent fill is a preferred resupply technolsgy and 
vetting of norlcondensibles is undesirable. Transfer line chilldown and quick disconnects 
represent technologies that are enabling for this kind of operation. As can be seen from 
this chart compared to the charts for liquid storage and supply and thennal control, there is 
much more enabling technology that is required. 

The mass gaging and quality metering technology issues associated with fluid transfer and 
resupply are again identified as enabling. Long-term effects are important, but the storage 
periods for the space-based operations have not been clearly defined and the repeated cycling 
determination aspects have not been delineated. These could become enabling based on the 
particular operational scenarios proposed and implemented. 

F L U I D  TRANSFER/RESUPPLY TECHNOLOGY REQUIREMENTS P R I O R I T Y  ASSESSMENT - 

A P P L I C A T I O N S  
SS I i E P C I  -EL- -_.- SU-Qil! 

@ RECFIVER TANK 
EMPTY 

CHILLDOWN 
A C Q l J I S l T l O N  D E V I C E  F I L L  

VAPOR COLLAPSE 
PbZGE, NON-CONDENSI BLES 

NO-VENT F I L L  
P A R T I A L L Y  F U L L  

VENTING NON-CONDENSIBLES 
NO-VENT F I L L  
VENTED F I L L  

@ TRANSFER L I N E  
CII 11-LDOWN 
Q U I C K  UISCONNI CT 

8 l  A D D I T I O N A L  TECHNOLOGY ISSUES 
MASS GAGING 1 
MASS/QUAL I TY E T E R  I NG 1 
PUMP VS.  PRESSUR I L E D  TRANSFER 2 
LONG TERM EFFECTS 

REPEATED CYCLING DEGRADATION 3 
CONTAM1 NATION 2 

Figure 11 

This chart summarizes the fluid management technology requirements based upon the 
previous prioritization assessment. The last item addresses an issue of scavenging 
prope'49ant from the Shuttle External Tank (ET) following boost. Since topping a nearly full 
depot tank with propellant scavenged from the ET at different saturation conditions may be  
difficult, it may be required to handle scavenged propellants in separate tanks. 



ATTACtIEI) OR FREE-FLYER DEPOT F L U I D  MANAGEMENT TECHNOLOGIES - 
@ TOTAL COMMI INICATION L I Q U I D  A C Q U I S I T I O N  D E V I C E  

r AUTOLENOUS PRESSlJR I Z A T I O N  

a, I N T E R N A L  AND COIIPL.ED THERMODYNAM 1 C VENTS FOR THERMAIL (PRESSURE) CONTROIL AND 
PRL)PEL.LANT C 0 N I ) I T I G N I N G  

@ THERMAL CONTROL SYSTEM PROTECTION FROM ENVIRONMENT (CONTAMINATION,  ATOMIC 
OXYGEN, E T C )  TO P R E V E N l  DEGRADATION WITH T I M E  

c MASS GAUGING, INSTRUMENTATION,  CONTROL SYSTEM AND D I A G N O S T I C S  

r MUST BE CAPABLE OF B E I N G  RESUPPL.IED A S  A P A R T I A L L Y  F U L L  TANK AS WELL A S  A D R Y .  
WARM TANK 

@ D I F F E R E N T  S I Z E  TANKS MAY BE REQUIRED TO HAN1)I.E SCAtIENGED IiROPELI.ANT S I N C E  
IOPPENG NEARLY FULL DEPOT TANKS W I T H  PROPELLANT A T  A I I I F F E R E N T  S A T U R A l - I O N  
C O I I D I T J O N  MAY RE D I F F I C U L T .  

F i g u r e  1 2  

A Cryogen ic  ~ l u i d  Management F a c i l i t y  (CFMF)  h a s  b e e n  p l a n n e d  t o  o b t a i n  l m c h  of  t h e  9s-a 
t h a t  h a s  b e e n  d i s c u s s e d  f o r  a t t a c h e d  d e p o t  o p e r a t i o n s .  The p u r p o s e  o f  t h e  f , 3 c i l ~ t y  is to 
c a r r y  a  r e u s a b l e  t e s t  bed  i n t o  s p a c e  a t t a c h e d  t o  t h e  O r b i t e r  t o  o b t a i n  b a s i c  d a t a  on 
c r y o g e n i c  f l u i d  management. The f a c i l i t y  u s e s  l i q u i d  hydrogen  a s  t h e  t e s t  E t u i d  and  s s  

d e s i g n e d  f o r  seven  S h u t t l e  f l i g h t s .  The d e t a i l e d  d e s i g n  o f  t h e  f a c i l i t y  i s  n s a r i y  comp)cac 
and m i s s i o n  p l a n n i n g  is now p r o c e e d i n g  f o r  t h r e e  f l i g h t s .  The  f a c i l i t y  w i l l  p r o v i d e  d s i z  L o  

a l l o w  low-g v e r i f i c a t i o n  o f  f l u i d  and t h e r m a l  models  t h a t  encompass  methods  o f  nnregraf~ng 
pressure C C ~ B T ~ T O ~ ~  l i q u i d  acquisition d e v i c e  and l i q u i d  t r a n s f e r  c o n c e p t s .  The ~ . - x y r r - . m e n - ~  
d a t a  w i l l  p r o v i d e  t h e  d a t a  b a s e  f o r  d e s i g n  c r i t e r i a  a p p l i c a b l e  t o  s u b c r i t i c a l  c x y - g e n e c  
s y s t e m s  i n  s p a c e  and w i l l  p r o v i d e  t h e  t e c h n o l o g y  r e q u i r e d  t o  e f f i c i e n t l y  and effectivelv 
manage t h o s e  c r y o g e n s ,  

DESIGN,  F A B R I C A T E ,  AND CARRY I N T O  SPACE A REUSABLE T E S T  BED WHICH W I L L  B E  
U T I L I Z E D  TO P R O V I D E  T H E  TECliNOLOGY REQUIRED TO E F F I C I E N T L Y  AND E F F E C I I V E I _ ' I  
MANAGE CRVOGENS I N  SPACE 

- L l Q U I D  HYDROGEN T E S T  F L U ! D  
- D E S I G N E D  FOR SEVEN S H U T l l - E  F L I G H T S  

CURRENT M I S S I O N  P L A N N I N G  FOR THREE F L I G H 7 S  
- 1 OW-G V E R I F I C A T I O N  OF F L U I D  AND THERMAL MODELS - METHODS OF I N T E G R A T  N b  

P R t S S U R E  CONTROL, L i Q U l D  A C U I J I S I T I O N  AND L I Q U I D  TRANSFER CONCEPTS. 
- E S T A B L i S t I M E N T  OF D E S I G N  C R I T E R I A  FOR S U B C R I T I C A L  CRYOGENIC SYSTEMS 114 ~ P N C I -  

F i g u r e  1 3  



The Cryogenic Fluid Management Facility will provide enabling technology for the space 
sratlon cryogenic fluid elements, and associated cryogenic users such as the space-based 
G I  The emphasis of the facility is on liquid acquisition devices and thermodynamic vent 
systems and h o w  they can be integrated together for effective storage and thermal control, 
and on liquid transfer and resupply operations. The seven-day Shuttle operation with an 
artached payload does not permit thorough t e s t i n g  of long-term storage effects. Current 
planning is for three missions with the first launch about mid-1988, and subsequent launches 
on six to nine month intervals. 

CFMF A P P L I C A B I L I T Y  TO CRYO F L U I D  MANAGEMENT TECHNOLOGY NEEDS - 
e CRYOGENIC F L U I D  MANAGEMENT F A C I L I T Y  W I L L  PROVIDE ENABLING TECHNOLOGY FOR 

SPACE STAT ION CRYO F L U I D  ELEMENTS AND ASSOCIATED CRYO USERS SUCH AS lk1E 
OTV . 

r EMPHASIS I S  ON L I Q U I D  A C Q U I S I T I O N  DEVICES, THERMODYNAMIC VENT SYSTEMS, AND 
L l  QU 1 D TRANSFER/RESUPPLY 

s MAXIMUM SEVEN DAY SHUTTLE F L I G H T  DOES NOT PERMIT THOROUGH TESTING OF LONb 
TERM STORAGE CONCEPTS, 

r CURRENT PLANNING I S  FOR THREE MISSIONS;  F I R S T  LAUNCH ABOUT M I D - 1 9 8 8  

Figure  14 



PROPELLANT TRANSFER - TETHERED DEPOT 

K .  Kroll 
NASA Johnson Space Center 

Spacebasing of o r b i t a l  t r a n s f e r  vehic les  a t  a  space s t a t i o n  w i l l  require 
a  depot t h a t  w i l l  s a f e l y  and e f f i c i e n t l y  s t o r e  and t r a n s f e r  t h e  resupply 
p rope l l an t s .  In order  t o  t r a n s f e r  p rope l l an t s ,  a  method t o  e f f e c t i v e l y  
acqu i r e  only l i qu id  and vent only gas must e x i s t .  Unfortunately,  t h e  c u r r e n t  
methods of t r a n s f e r r i n g  p rope l l an t ,  under t h e  zero 'GI condi t ion  of rancioln 
l i qu id  o r i e n t a t i o n ,  have severa l  weaknesses. A method t h a t  produces 8 low 
g r a v i t y  t o  s e t t l e  p rope l l an t s  would bypass t h e s e  weaknesses, while  allowing 
ground-like opera t ions .  T h i s  low g r a v i t y  can be pass ive ly  produced u s i n g  
g r a v i t y  g rad ien t  techniques .  A s a t e l l i t e  with a  l a rge  length t o  dfameLer 
r a t i o ,  such a s  a depot a t tached  t o  a  space s t a t i o n  with a  t e t h e r ,  will 
s t a b i l i z e  along an e a r t h  r a d i a l  because of an outward a c c e l e r a t i o n  
proport ional  t o  t h e  d i s t ance  from t h e  s a t e l l i t e t s  c e n t e r  of g r a v i t y ,  Ana lys i s  
i n d i c a t e s  t h a t  l i q u i d  can be s e t t l e d  with r e l a t i v e l y  s h o r t  t e t h e r  lengths .  
However, longer  t e t h e r  lengths may be required t o  prevent  excess ive  res i a u a l  s 
due  t o  suc t ion  d i p ,  t o  al low t r a n s f e r  using g r a v i t y  f eed ,  and t o  allow s losh  
c o n t r o l .  

Current ly t h e  t e the red  r e fue l ing  depot concept i s  being s tudied  by M z r t i ?  
Mariet ta  Aerospace under c o n t r a c t  t o  N A S A ,  Johnson Space Center.  T h e  
ob jec t ives  o f  t h i s  c o n t r a c t  a r e  t o  determine t h e  f e a s i b i l i t y ,  design 
requirements,  and  opera t iona l  l i m i t a t i o n s  of a  t e the red  r e fue l ing  depot w i t h  
spec i a l  emphasis on s losh  c o n t r o l .  

The purpose of t h i s  p re sen ta t ion  i s  t o  in t roduce  t h e  t e the red  refueling 
depot concept t o  t h e  o r b i t a l  t r a n s f e r  vehic le  community. This should d71ow 
t h e  concept" e f f e c t s  on p rope l l an t  resupply,  space s t a t i o n ,  and orb-1Pa"I 
t r a n s f e r  vehic le  t o  be given some cons idera t ion  during prel iminary des15n 
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Figure 1 

A z e r o  g r a v i r y  d e p o t  i s  a t t a c h e d  d i r e c t l y  t o  t h e  s p a c e  s t a t i o n .  
E e c a u ~ e  o f  tt-~e r a n d o m  o r  i e r t t a t i o n  o f  f l u i d  p h a c . e s  t h i s  d e p o t  n e e d s  
h a r d w a r e  i n t e r n a l  t o  t h e  t a n k s  f o r  a c q u i r i n g  l i q u i d  f rorc i  t h e  
s u p p l y  t a n k  a n d  f i l l i n g  t h e  r e c e i v e r  t a n k  w i t h o u t  v e n t i n 3 .  T h e  
t e t h e r e d  d e p o t  i c .  c o n n e c t e d  b y  a t e t h e r  t o  t h e  s p a c e  c . t a t i o n .  
Because o f  t h e  s e t t l e d  c o n d i t i o n  o f  t h e  f l u i d ,  t h e  t e t h e r e d  d e p o t  
car1 a c q u i r e  l i q u i d  f r o m  t h e  s u p p l y  t a n k  a n d  v e n t  g a s  d u r i n g  f i l l  
u f  t h e  r e c e i v e r  t a n k  w i t h o u t  i n t e r n a l  h a r d w a r e .  T h e  s u p p l y  a n d  
r e c e i v e r  t a n k  u l l a g e s  can be i n t e r c o n n e c t e d  t o  e q u a l i z e  t h e  
p r e s s u r e  i n  b o t h  tanks o r  a u t o g e n o u s l y  p r e s s u r i z e  t h e  r e c e i v e r  
t a n k ,  w h i c h  w i l l  a l s o  r e d u c e  t h e  v e n t i n g  o f  p r o p e l l a n t  i n  t o  s p a c e .  



CURRENT TECHNIQUES TO SEPARATE 
FLUBD PHASES ON.-ORBIT 

@ TYPES 

s PHYSICAL BARRIERS (BLADDERS AND DIAPHRAGMS) 

e SURFACE TENSlON DEVICES (VANES AND SCREENS) 

a ACTIVE PROPELLANT SETTLING QPRBPULSBVE AND ROTATIONIAL) 

@ PROBLEMS 

@ COMPLEX HARDWARE 

a SUBJECT TO FATIGUE WITH REUSE 

@ COMPATIBElhlTV PROBLEMS WITH PROPELLANT 

@ SEMSlYBVE TO G A S  FORMATlON WITH CRYOGENS 

9 COMPLEX VENTING AND VAPOR COLLAPSE PEGHNiQUES 

@ ACTIVE SETTLING IINCOMPATIBLE WITH SPACE STATION COMITROL 

8 BASIC PROBLEM: RANDOM OWlENTATlOM OF LIQUID 
I M  ON-ORBIT 'ZZERO-GRAVITYXENVIRONMENT 

F i g u r e  2 

C u r r e n t l y  t-c.10 t y p e s  of , t e c h n i q u e s ,  p a r n t r e  a n d  a c t i u e ,  a r e  u s e d  te 
s e p a r a t e  f l u i d  p h a s e s  a n - o r b i t .  P a s s i v e  t e c h n i q u e s  i n c l u d e  
p h v z  i ca% ttarr i ers, s u c h  a s  b l a d d e r s  and d i  a p h r a 3 r r r s ,  a n d  c u , r i a r . c a  
t e n 5 . i  n n  del." C.UC.~-I  as. ~ ~ a n e ~ .  a n d  c . c r e e r t s ,  j k r & ~ E  d e v i c e s  ai-e 
i n  t -e l -nal  t o  t h e  p a - o p e 6 6 a r - 1  t t a n k . 5  \ , ,@Rich c a n  p v e s e n  t p r o b l e m s  f0 . r  
l o n g  t e r m  ~ e ~ ~ r s b i l i e y  o n  a s p a c e  s t a t i o n  d e p o t .  They a r e  c o m p l e : ~  
t o  d e s i g n ,  f a b r i c a t e ,  a n d  i n s t a l l ;  s u b j e c t  e o  F a t i g u e  w i t h  retJse; 
a r r d  d i  f  f i c u l  t t o  r e p a i r  a n d  r e p l a c e .  H a r d r , . i a r e  r r ! a t @ r i  a1 s e l e c t  i or ,  
r.,ei.il be  Linr1i red  b e c a u s e  o f  i n c c 6 m p a t i b i l i  t y  w i  rrh o i i i d i z e r s  a n d  
c r v c ! g e ~ - t \ ;  - H a r d w a r e  mi 1. .E. i n c r e a s e  c . enc i  t i v  i t y  t o  9-35. f o r m a t i o n  i r: 
c r 1 ; > o g e n c  e . , ~ h i c h  w i l l  i n c r e a s e  t h e  p r o b l e m  o f  s e p a r a t i n g  t h e  f l u i a  
p h s s . e s .  S u r f a c e  t e n c . i o n  d e v i c e s  a r e  mreant tc r  i n s u ~ e  t h a t  l i q i i a d  i z  
a r . q u i r r d p  b u P  t h e y  c a n ' t -  i n s u r e  t h e  g a s  p o s i  t i o n  f o r  o e n " c a ! - ~ g :  
t h e r e f o r e ,  cornpl r : . :  v e n t i n 9  a n d  v a p o r  c o l l a p r e  t e c h n i q u e s  a r e  
u e q u i  r e d .  H l  t e u n a t - i v e l y ,  actit.!@ p r o p e l l a n t  s e t r l i n g ,  p u o p u . l " * . ~ e  
t h r u s t i n g  n r  r 'o t a t  i o n  o f  a v e k r i c l e  wi t h  o f f s e t  p r o p e l l a n r :  t a r t k , ~  ,, 

can f o r c e  ?he d e n r . e r -  L i q u i d  in t h e  d i r e c t i o n  o f  t h e  a c c e l e . t a ? i ; o n ,  
C i c t i a e  p r o p e l l a n t  c e t t l i n q  i r  i r . l c o r n p a c i b l e  t.,li r h  t h e  s p a c e  .tat- or ,  
r e q u i r e m e n ?  f o r  c c ~ n t r o l  o f  a t t i  e u d e  a n d  o v b i  ral p o s i  t i o r , .  



ARTIFICIAL GRAWTY AT TETHERED SATELLITES 

4B BODY FCIRCES CANCEL AT CENTER 
OF GRAVITY (c.G.1 BODY 

@ ""ZERO GRAVITY" FORG 
TENSlO 

@ NET BOCbY FORCE OFF THE 6.6. 
Q GREkVlTY FORCE lN6REASES 

TOVVARD EARTH 
@ CEhlTRiFlBGAL FORCE INCREASES AWAY 
FROM EARTH 

@ GEhlTRIFUGAL AND GRAVITY FORCES 
IN CIPPOSBTE DIRECTION 

@ BODY FORCE POINTS 
AWAY FROM 6.6. 

@ TENSION IN STRUCTURE REACTS 
AGAINST BODY FORCE 

BODY 
FORCE 
COMPONENTS 

F i g u r e  3 

The cancelling of the centrifugal and gravj ty body forces for a 
t e ~ h e v ~ d  satellite in a circular orbit, "ier~l qravity", occurs 
only at the center of gravity. The gravity force is stronger 
t oward  the earth, while the centrifuyal Force is stronger away 
from the earth. The net body force, when not at the center of 
g r a v i t y ,  points away from the satellite's cenper of qravity along 
an earth radial to be reacted against by tension in the depot 
structure and tether resulting in "artificial gravity". This 
a r t  i f i c : i a l  qra1,ji ty will stabilize a large length to c~idth object, 
such as. a tethered satellite, pointing at the earth. This 
stabilization is called "gravity gradient stabilization". 



AWB%FICIAL GRAVITV FOR STATIC TETHER 
ARTIFICIAL GRAVITY AT TETHER END 

@ APPARENT ACCELERATION 

A - C-G 

0 CENTRIFUGAL ACCELERATION @ VELOCITY OF ANY POINT 

e = v * * 2 / ~  
ON TETHER 

V Vc"R/Rc 

@ GRAVITATIONAL ACCELERATION @ SATELLITE VELO42ITY 

G -- e, $ W ~ / R ) * * ~  v, =: d w K ;  

SUBSCRIPTS PARAMETERS 
8 = EARTH'S SURFACE W = RADlUS FROM EARTH'S CEi4TER 
C = SATELLITE CENTER TL = TETHER LENGTH FROM8 C:.G. 

OF GGRAVBiTY K = 6076 FT/NM 

Figure  4 

-- she apparer1 . f  a c c e k e r a r i o n  t h a t  a  p o i n t  ist ~ ~ b i t  sees i s  t h e  
d i  f F e r a n c e  b ~ - ' t ! ~ ~ e ? n  t h e  c e n  t r  i F u g a l  a c c e l e r a t  i or#, uidl-ai eh is a 
F u n c t i l o r ~  clF v e l o c i  t:! a n d  r a d i u s  f r o m  t h e  e a r t h i s  r e n t e r  a n d  t;-le 

cjl-2:.rl t a t i o n a l  a c c e l e ~ a t i c l r ~ ,  ~ . ~ h i t h  is  a  F u n c t i c a n  o f  t h e  dir-t.3rar.s 
frrirri t h e  e a r t h > ' s  c e n t e r ,  For  a s t a r i c  t e e h e r ,  the v ~ l s c i  tlp fr:tr ar-!:>.* 
p o i n t  O R  t h e  t e t h e r  can b e  fc tun i l  a s  a f u n c t i o n  o f  its d i s t b n c e  
f r o r e  t h e  e a r  th'5. cer9tf .r  ?which can be u e l a t e d  t o  t h e  t e t h e r  l e n z g Q h  
f r o m  t h e  r a t e l l i k e ' s  c e n t e r  o f  g u a u i t y  w h i c h  i r  3 k n o w n  d jn . t an -e  
f r o m  t h e  e a r t h ' s  c e n t e r .  T h e  a r t i f i c i a l  gT-auit!y6,  t h e  r a t i o  o f  
a p p a r - ~ n t  acceleration t o  ti-re e a r t h ' s  5.uvface 9 1 - . 3 ' ~ i ~ ! > l ~  i ~ .  f(:ic.~??d t t t  

b e  a direc? f u n c t i o n  o f  t h e  t e t h e r  l e n g t h .  



TETHIER LENGTH MS. ARTlFlCIAL GRAVITY 

TE'THER 
LEIJGTI-8 

FROM 
C.6 

(FTl 

Figure 5 

F:sr a s t a t i c  u e r S i c a l  t e t h e r  t h e  s r t i f  i c i a l  gsavi t y  i s  7.06-k113 - 4 

q:'nrn o r  1.16*10 g / f t  o f  t e t h e r  l e n g t h  from t h e  s a t e l l i r e  c e n t e p -  
o f  g r a v i t y .  

8.6; f t  
86 f  t 
860 f t  
1 . 4  nrn 
1 4  nrn 
140 ' n m  



CRITERIA FOR FLUID SETTLING 

Q DESCRIPTION OF FLUID SETTLING PARAMETER 

ACCELERATION FORGE p*A,*B""2 - ---- 
BOND NUMBER 'Bo' = SURFACE TENSlON FORCE 

- 
4*Gc"a 

p = FLUID DENSITY (LBMIFT""3) 
A = ACCELERATION (FT/SECe*2) 
D = EFFECTIVE TANK DIAMETER (FB) 
Gc = 32.174 LBM "FB/LBF/SEC*"2 
a =: SURFACE TENS%ON (LBFIFT) 

@ BOND NUMBER CRiSTERlA 
Bo < 1 SURFACE TENSION DOMINATES ACCEkERATTIBN, 

THEREFORE NO FLB19D SETTLING 
I < Bs < 10 TRANSITION ZONE 
Bs > 30 ACCELERATION DOMINATES SURFACE TENSION, 

THEREFORE FbUlD SETTLES 
Bo = 50 ALLOWS RELATIVELY FLAT FkkBlD PHASE INTERIFAGE 

(CHOSEN AS MINIMUM BOND NUMBER FOR ANALYSIS)  

F i g u r e  6 

F l u i d  s e t t l i r r q  i s  t h e  b a s i c  r e q u i r r t ~ e n t  on a t e t h e r e d  d e p o t  t o  
p o s i t i o n  l i q u i d  o v e r  t h e  o u t l e t  s o  o n l y  l i q u i d  w i l l  b e  t r a n s f e u e d  
a n d  o n l y  g a s  ~ u e n t e d .  T h e  f l u i d  s e t t l i n g  p a r a m e t e r  is  t h e  B o n d  
nurnher k;,~hich i.: t h e  r a t i o  o f  t h e  a c c e l e r a t i o n  f o r c e  t o  t h e  <r-~!rf&ti_',r; 
t e n s i o n  f o r c e ,  T h e  Bond number  i s  p r i m a r i l y  a f u n c t i o n  o f  t h e  
F l u i d  p r o p e r t i e s ,  t h e  e f f e c t i u e  t a n k  d i a m e t e r ,  a n d  t h e  
a c c e l e r a t i o n ,  T h e  Bond number  c a n  b e  u s e d  t n  d i v i d e  t h e  f l u i d  
b e h a v i c i r  i n t o  a number  o f  z o n e s  w i t h  a v a l u e  g r e a t e r  t h a n  t en  
r e q u i r e d  t o  s e t t l e  f l u i d .  A v a l u e  o f  f i f t y  was c h o s e n  a s  t h e  
m i r ~ i m u m  f o r  a n a l y s i s  f o r  c o n s e r v a t i s m  w h i l e  a l l o w i n g  a v e l a e r v e l v  
F l a t  i n t e r f a c e .  



FAllUIMUIVtl TETHER LENGTH 
FOR PROPELLANT SETTLING 

3000 5.8 
I 4  

TETHER 
2500 TANK 

DIAMETER 

OXYGEN HYDROGEN NTO MMH HYDRAZINE 
p (LMB/FVe*3) 70 4.3 90 55 63 

T h e  t e t h e r  l e n g t h  r e q u i r e d  f o r  f l u i d  s e t t l i n g  is  a f f e c t e d  b y  f l u i d  
p r o p e r t i e s  a n d  e f f e c t i v e  t a n k  d i a m e t e r .  L o n g e r  t e t h e r s  a r e  
r e q u i r e d  f o r  h a v i n g  h i g h e r  s u r f  ace t e n s i o n  o r  s m a l l e r  l i q u i d  
dencity. D e c r e a s i n g  t h e  e f f e c t i v e  t a n k  d i a m e t e r  a l s o  r e q u i r e s  a 
longer t e t h e r .  Th i s  is a c o n s i d e r a t i o n  w h e n  l o o k i n g  a t  b a f f l e s  f u r  
s l o s h  c o n t r o l  b e c a u s e  b e c a u s e  t h e y  c a n  c h a n g e  t h e  e f  f  ee t i v e  t a n k  
d i a m e t e r .  W i t h  n o  b a f f l e s  t h e  c r r ? o g e n i c s  t ~ o u l d  r e q u i r e  230 f e e t  o f  
t e t h e r  l e n g t h  w i t h  1 4  f o o t  d i a m e t e r  t a n k s ,  t h e  t i p r o p e l l a n t  
stovsbl~s w o u l d  r e q u i r e  2180 f e e t  w i t h  5 .8  f o o t  t 3 n k s ,  a n d  
h y d v a z i n e  w o u l d  r e q u i r e  3750 f e e t  w i t h  5.8 f o o t  t a n k s  t o  s e t t l e  
p r o p e l l a n t .  



PROPELLANT SLOSHING 

B$B ISSUE 

@ SLOSHING SHOULD NOT INTERRUPT FLUID TRANSFER 

- DO NOT UNCOVER SUPPLY TANK OUTLET 

- DO NOT CQVER RECEIVER TANK VENT 

@ POTENTIAL SQ&UT%ONS 

@ INCREASE ACCELEAATlON LEVEL TO REDUCE SLOSH 
HEIGHT 

@ INTERNALLY DAMP SLOSHING WITH BAFFLES 

- DECREASE IN EFFECTIVE DIAMETER WILL INCREASE 
REQUIRED ACCELERATION FOR SETTLING 

e EXTERNALLY DAMP SLOSHING 

-- MAY NOT BE EFFICIENT 

@ SLOSHING WILL BE STUDIED BY MARTIN MARIETTA UNDER 
CONTRACT TO NASA, JOHNSON SPACE CENTER 

Figure 8 

Even though a liquid will euentually settle i t  can still 5: .4c tsh  

when disturbed, changing the position of the liquid relative t o  
the tank outlet and vent. This sloshing should not cause t:he F l u i d  
transfer to be interrupted by uncouerinp the the supply t a n k .  
outlet or covering the  receiver tank  v e n t .  Sloshing can be reduced 
by increasing the acceleration to limit the slosh height, 
ircteunally dampening the sloshing with baffles, or e x  ternally 
dampening the sloshing with devices such as reaction wheelsp 
dashpots, etc. B a f  fPes may have a problem because they can1 reduce 
the effective diameter of the tank, thus requiring greater tethev 
length tct insure settled propellant. The external dampening 
rriethods ma!.) not be efficient. T h i s  pvcblent will be Furtbeu s t u d i e d  
by Martin Plauietta under cowtraet to NASA, Johr~s~rr Space C e n t e r .  



RESlDUAL DUE 0 SUCTION DIP 

d RESIDUAL IS  REMAINING klQU1D WHEN 
SUCTION DIP REACHES OUTLET 

@ SUCTION DIP HEQGMT (HI 

V = FLUID VELOCITWN LINE 

A = APPARENT ACCELEWATlON 
DL = LINE DlAMETER 

DT = TANK DIAMETER 

@ P R I M A R Y  VARIABLE AFFECTBNG 
RE!;BDLOAL$ 

@ h4'BASS FLOW 
@ LINE DIAMETER 

ACCELERATION LEVEL 

DRAINING TANK 

k p r o k ' l e r n  t h a t  a t e t h e r e d  d e p o t  d o e s  h a v e  t h a t  a z e r o  q r a v i  t y  
depot d o e s  n o t  h a v e  i s  p r e v e n t i n g  t h e  v a p o r  f r n m  d i p p i n g  i n t o  t h e  
~ u t l e t  d u e  P o  s u c t i o n  f r o m  p r o p e l l a n t  o u t f l o w .  T h i s  i s  c a l l e d  
" s u e t i o n  d i p " .  F o r  t h e  t e t h e r e d  t a n k ,  o u t f l o w  m u s t  b e  s t o p p e d  w h e n  
l ~ s p c i v  r e a c h e c  the o u t l e t ,  w h i c h  c a n  r e s u l t  i n  s u b s t a n t i a l  r e 5 . i  d u a l  
p r o p e l l a n t  i n  t h e  t a n k .  T h e  s u c t i o n  d i p  i s  p r i m a r i l y  a f u n c t i o n  o f  
mass f $ot..,t, 1 i ne d i  a r n e t e u  , a n d  t h e  acceler  a t  i cln l e u e l  ; t h e r e f o r e  
i f  Pke s t e a d y  s t a t e  m a s s  f l o w r a t e  d u r i n g  a t r a n s f e r  is  decreased 
t o  r ec ;uce  r e s i d u a l s  l o n g e r  t r a n s f e r  t i m e s  w n l l  r e s u l t .  S p e c i a l  
n u t l e t  p r o v i s i o n s  s u c h  a s  o u t l e t  c o n t o u r i n g  a n d  s c r e e n s  c a n  l i m i t  
t h e  a f f e c t  o f  t h e  s u c t i o n  d i p .  H o w e v e r ,  i f  n o  s p e c i a l  o u t l e t  
p r o l . ! i  c . i o n s  aye u s e d ,  v a r y  i n g  t h e  f l c k w r a t e ,  i n c r e a s i n g  l i n e  
d i a m e t e r ,  a n d  i n c v e a s i n y  t h e  a c c e l e r a t i o n  l e v e l s  w i l l  be r e q u i r e d  
t o  minimize t r a n s f e r  t i m e s  a n d  r e s i d u a l s .  



T R A N S F E R  
Tii'dlE 
(HR) 

TRANSFER Tlkt,4E FOR 18% RESIDUALS 
OXYGEN (42.858 LBS) CCINSTANT 

FLOWRATE 

T R A N S F E R  --- T I M E  

14 FT. DIA. T A N K  

10-5 a 0-4 I o - ~  
(A/'%) 

Figure 10 

E a c h  p l o t t e d  p o i n t  i s  t r a r t s f e r  t i m e  a s s u r t t i r t g  a c o n s t a n t  f l o i . . ~ r e r l - ,  
d u r i n g  t h e  t r a n s f e r ;  t h e r e f o r e ,  a l o n g  t h e  l i n e s  o f  c o n s t a n t  
d l  a m e t e r  s.hor,bn, t h e  rns . .  f  l c , l . l r a t e  v a r i e s  c o n  t i  n u o u s l y  . T h e  
r + c e p  t i o n  i  5. t h e  t w o  f l o ~ ~ r a t e  c3se r t t o t  tn t . . ~ h e r r  kt1 gh i n i  t i  s l  
f l c t i . t r a t e   as a s s u m e d  u n t i l  r h e  r u c t l o n  d i p  f r o r n  t h ? t  f l o ~ - . t r  s t e  
r e a c h e c  t h e  o u t l e t  . A s t e p  c h a n g e  t c  a loc . i e r  f l o u r a t e  c,Jac t h e n  
a s s u m e d  t o  o c c u r .  A l o n g  t h i s  l i n e  t h e  f l o t , ~ r a t e  a l s o  v a r i e s  i n  a 
c o r t t i n u e u s  m a n n e r .  A c s u m i n g  a r a n k  w i t h  h e r n l ~ p h e r i c a l  e n d z ,  n o  
s ~ g e c i a l  o u t l e r  p r o u i s i a n s ,  a n d  a g a s f l i q u i d  i n t e r f a c e  n e a r  t h e  
u a l l  t h a t  h a s  a c u r v a t u r e  c o r r e ~ p i ~ n d i n g  t o  t h e  l o c a l  b o r t d  n u r r t b e r .  
o x v g e n  h a s  l o n g e r  t r a n s f e r  t i m e s  t h a n  h y d r o q e n  f o r  10% res i d u a l s .  
L e r q e r  p r o p e l l a n t  l i n e  d i a m e t e r s  r e d u c e  t h e  t r a r ~ s f  e r  t i m e  b v  
i n c r e a s i n g  t h e  m a s s  f l o w  t h a t  w i l l  c r e a t e  a 3 i u e r ~  s u c t i o n  d i p  
h e i g h t .  A l i n e  d i a m e t e r  cqf tc!o i n c h e s  a s  c u r r e n t l y  u s e d  i n  t h e  
C e n t a u r  r J o u l d  p r o b a b l y  h e  u n a c c e p t a b l e  d u e  t o  t h e  l o n g  t r a n s f e r  
t i r n e s  o r  h i g h  a c c e l e r a t i o n  r e q u i r e r n e n r s .  A f o u r  i n c h  l i n e  d i a m e t e r .  
r 4 o u l d  a p p e a r  t o  be a c c e p t a b l e  a t  a b o u t  a n  8 h o u r s  t r a n s f e r  t i r n e  
w i t h  a n  a c c e l e r a t i o n  o f  10**-4 g ;  f u r t h e r r n c r e ,  i f  a t w o  ~ t e p  f1ob.i 
i s  u s e d  t a  l i r r l i  t t h e  f l o b ~  n e a r  t h e  e n d ,  t h e  t r a n s f e r  t i m e  i z  
r e d u c e d  t o  3 h o u r s .  T h e r e f  o r e ,  a r e a s o n a t o l e  a c c o l e r  a t  i  ar t  l e v e l  c a n  
h e  u c e d  f o r  r e a s o n a b l e  r e s i d u a l s .  



GRAVITY FEED 

48 (2RAVITV FEED USES HYDROSTATIC HEAD FROM ARllF166AL GRAVITY 
PO COUNTERACT PRESSURE DROP IN FEEDLINE 

ICLOWRATE IS  DETERMINED BY BALANCE BETWEEN HYDROSTATIC 
I4EAD AND PRESSURE DROPS 

Q HYDROSTATIC HEAD SOURCES 

B VERTICAL LINES 

Q IWROPELLANB 8N TANK 

69 PRESSURE DROP SOURCES 

e L.INE FRlGTlON 

@ baI=OMPONENT LOSSES 

@ UNLET!OUTLET AND ELBOW LOSSES 

Q COMF'LETE ANALYSIS NEEDS DETAILED FLUID SYSTEM CONFIGURATBON 

d S1MPL.E ANALYSIS LOOKS AT ONLY FLOWRATE FOR VERTICAL PIPE SECTlON 

@ HYDROSTATIC PRESSURE HEAD FROM VERTICAL LINE ONLY 

o FqRESSURE DROP FROM VERTICAL LINE FRICTION ONLY 

a INDEPENDENT OF LIME LENGTH 

A tetnEred d e p o t  c a n  p o s s a t d v  u s e  g r 3 v l t y  F e e d  a: a p a : c l l t e  S l u l d  
r r a n c f e r  t e c h n r q u e ,  G r a v a t y  f e e d  U C E ~  h y d r o s t a t i c  head t l : ,  p t o ~ ~ i d e  
t17e (3r- I i l n g  f o v  ce t o  c o u n t e r a c t  t h e  p r e 5 ~ u r - e  d r o p  as5nc13Ted I J ~  7I-r 

a ces r a l n  m a s s  f l o w .  T h e  h y d r o c  t a t  l c  P l e a d  as d e t e r m i r r e d  b y  t h e  
vea t i c z l  separat l o n  b e t w e e n  t h e  gas11  I q u i  d I rl t e r f  aces o f  t h e  
c u p n l i , ~  ; n d  receiver t a n k  a n d  t h e  d e n s l t y  o f  t h e  l l q u l d .  ?he 
p u e c c u l e  d r o p  r e s u l e c  f r o m  11ne f v a c t ~ o n ,  c o m p o n e n t  l o s s e s ,  and 
chsrge .  ~n t h e  d n r e c c l o n  o f  the F l a w .  A c o m p l e t e  a n a l y s l c  w o u l d  
- r e c ~ ~ z p e  a detailed fluid system e o n f ~ g c i v a t l o n ,  H o w e v e r ,  an idea o f  
t h e  rc 1 n lmum requ 1 r e m e n  P f o r  t e t h e r  l e n g t h  c a n  h e  d e t e r r n l  n e d  b(3 
i . z ~ i k , l n q  at a simple case where a l l  t h e  p r e c s u r e  d r o p  is ~n 
i ler c sea4 l ~ r t e s .  



15 
TRANSFER 

TIME 
(HRS) 

GRAVITY FEED 
FOR VERTICAL PIPE SECTION 
WITH CONSTANT FLOWRAPE 

HYDROGEN (6429 LBS) 

Figure 1 2  

E a c h  p l c ~ t t e d  p o i r t t  i s  t r a n s f e r  t i r i l e  a s c . u m i r t g  a c o n s t a n t  f l c l , - ! r a s e  
d f . ~ r l n Y  t h e  t r a n s f e r ;  t h e r e f o r e ,  f lo t . , . . r r a te  v a r i e g .  c r ~ r t t i r ~ u o ~ ~ s l ! ~  a3.0t-t? 
e 3 c h  l i n e  o f  c o n s t a n t  d i a m e t e r .  H y d r o g e n  i s -  t h e  l i m i  t i n ?  
p r o p e l l a n t  f o r  d e t e r m i n i n g  g r a v i  t!,l f e e d  t r 5 n s f e v  t i m e  b e c . a ~ ; c e  o f  
I ts  lot..! denc.1 t y  . I f  8 h o u r s  i s  assurned t o  tle t h e  rrraxirnt~rn 
a c c e p t a t l l e  t r a n s f e r  t i m e ,  t h e  t e t h e r  l e n g t h  t ~ i t h  a l i n e  diem-te . t rv  
o f  f o u r  i n c h e s .  t , . ~ o u l d  tle a b o u t  o n e  h a l f  a n a u t i 4 z ~ l  r r ~ i l e .  T i t i s  
s i m p l e  a n a l ; . l c i c .  ~ ~ o ~ l l d  5 3 ~  t h a t  g r a l . l i t l :  f e e d  c a n  b e  u s e d  ~ . . ~ i t h  a 
r e 3 c o n a b l e  tre t h e r  l e n g t h ;  h o ~ s e v e r  , b e c a u s e  o f  t h e  lo~. . r  d e n 5 . i  r  i l  r_ f 
h : ~ d r o g e n  a n d  r e l a t i l r e l y  lot.,l a c c e l e r a t i o n  l e v e l s -  a r e t i - ~ e r  cz~r t  
p v o d l ~ c e ,  3 t e t h e r  \ , , t i l l  r e q u i r e  m u c h  m o r e  t e t h e r  l e r ~ g t h  t o  prcbdi -c - r  
art i r t c r e a s c - d  h y d r c f s t a t  i c h e a d  t a  c o m p e n s a t e  f o r  a l a r g e r  r e a l  n 5 t i  c 
p r e z r - l u r e   drop^. T h i s  may c a u s e  t r a n c . f e r  t i m e  t o  b e c o m e  e x c e s r i < r e ,  
31 t h o u g h  t t - ~ i  c s t  i l l  may be a c c e p t a b l e  i f  g r a v i  t y  f e e d  is  u g e d  as a 
b a c k u p  m o d e  o f  o p e r a t i  o n .  



d IrSEPOT $1-iiOULD PROVIDE HAZARD CLEARANCE FROM 
EIS<PLOSleBFlfS AND CONTAMIMA-rBON 

6 E%QBPOS\$B END MASS SHOULD MOT DEORIBIT WIT14 TETHER 
E!REAMP,GE 

8 CIPERA-PBOFdS BEYWEEid THE E N D  MASSES SHOULD NOT BE 
EXCESSIVELY DBBZFIGUL% 

8 CIE830-$ SHOULD MOT ADVERSELY AFFECT TETHER 
h!'b"P.dAMBCS 

@ SIPACE STATION MAY REQUIRE ZERO GRAVITY FOR 
h3lCROGRAVlTY LABORATORY 

F i g u r e  13 

Be.: i d e r  f l u i d  ? I - a r ~ s f e r  t h e  t e t h e r e d  d e p c f  t  t ~ a ~  a n u m b e r  o f  o t h e v  
u e q i i  a ve rnen  t 5 .  T h e  d e p o  t s h o u l d  p r o v i  d e  h a z a r d  c l e a l - a r r c e  f r o m  o  t r ~ e r  
Space s t ? t i o n  i - 1 . 3 r d l , ~ a r e  t o  p r e v e n t  c s t a s t r c i p h i c  o r  l o n g  t e l - m  i-Jarfias3e 
F r o m  e x p l o < . i n ~ i  o r  c o n  t a r n i r t a t i o n .  I f  t h e  t e t h e r  b r e a k s  t h e  b n  t t o m  
el-id r i - i a s %  ~ . h r ~ u l d  r i o t  d e o r b i t  t o  p r e v e n t  t h e  L o s s  o f  t h e  t lo t t .c tm e n d  
I~I-I?:~?. a r rd  d a r r i a l e  o r  i n j u r y  o n  t h e  q r o c r n d .  The n p e r a t i o r r s  t~e t t . , l een  
ti--re end mas-:.es., s u c h  a5 t r a n s f e r  o f  t h e  OT!.?? rrier:, e t c .  , 5 h 0 ? 1 1 d  n o t  
b e  e : : i . r ~ . s i i ! e l ! . ~  d i f f i c u l t  5.0 t h a t  t h e  d e p o t  c a n  b e   full;^ u"c1 ize t - j .  
TP,e d e p ~  t z . l - ~ c l ~ L d  ncl t a d v e r c e l y  a f  f e c r  t e t h e r  rr~o t  i crn t o  i n s u r e  
s % f  a n d  s p 3 c e  s t a t i o n  c o n t r o l .  A c p a c e  5 . t a t i o n . i d e p o t  
c o ~ f  i ~ i u l -  3 c  ion mai>) b e  r e q u  i r e d  t h a t  a l loc .15 .  a l ~ t . . ~  a c c e l e r a t  i o r ,  l e ~ J e l  
f o r  a m i c u c ~ g r a u i  t y  l a b o r a t o r y  a t  t h e  m a n n e d  p a r t  o f  t h e  z p . a c e  
5 :  3 " r  ion .  O f  the.5.e r e q u i v e m e n t s  , o p e r a t i o r ~ s  i n l . , c t l v i n g  t r a r l c f  e r  o f  
riieri 3r1d r!~a?;er- i a l s  b e  tt. ,leen t h e  end r r : a s s e s  a p p e + r  s t o  be t h e  h a r  ides t 
t 13 rr!Eje t a 
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Figure 1 4  

A s i m p l e  c o n f i q u r a t i o n  w o u l d  b e  a d e p o t , w h e r e  a n  0TV w o u l d  be 
Fueled, a t t a c h e d  w i t h  a s i n g l e  t e t h e r  t o  a c . p a c e  s t a t i o n ;  I-1nc.ie1~e.r 
t h e  r @ s u l t i n g  c e n t e r  o f  g r a v i t y  o f  t h i s  s y s t e m  i s  n o t  a ?  t h e  E F ~ C P  

s t a t i o n .  O p t i o n s  t o  p r o v i d e  z e r o  g r a v i t y  a t  t h e  s p a c e  s t a t i r g n  
inc .Lucfe  s p l i t i r r ~ q  t h e  d e p o t  i r ~ t o  c r y a 9 e r 1 i c  a n d  ~ . t o r a b . l e  facilr t i p ?  

and t e t h e r i n g  i n  o p p o s i  t e  d i r e c t i o n s  f r o m  t h e  5 p a c e  s t a t i o n  o r  
u s i n g  a c o u r ~ t e r l h ~ e i g h t ,  s u c h  a5 an e x t e r n a l  t a n k  o r  o t h e v  t e t h e r ~ c z i  
s y s t e m .  I f  a t  l e a s t  o n e  p i e c e  c l f ' t h e  d e p o t  i s  t h e  u p p e r  m a s s  w i t h  
t h e  s p a c e  s t a t i o n  k e p t  a t  t h e  c e n t e r  o f  g r a l - ~ i t y  o f  t h e  s y s t e m ,  the 
b o t t o m  m a s s  m u s t  h a v e  s u f f i c i e n t  r n a ~ s  s o  i t s  t e t h e r  l e n g t h  
l i m i  t a t i o n  t o  p r e v e n t  d e o r t t i  t d o e s  nt:tF r e s u l t  i n  t o o  l i  r tie u p p e r e  
mass. t e t h e r  I r n g t h  f ~ r  d e p o t  r e q u i r e r n e r t t s .  



@ FFe.UiD!S lNTERFACE WILL BE REQUIRED 

@ BOTH FEEDLINE AND VENT DlSCONNECTS 

s FORWARD POSHiBION IF NO PAYLOAD ATTACHED DURING 
TRANSFER 

@ AFT POSlTgiOM IF PAYLOAD ATTACHED DURING TRANSFER 

--- CONSIDERATION SHOULD BE GlVEN TO DUAL USE OF VENT 
AND FEED blN&S 

4B BAFFblES MAY BE WEQUlREQ TO DAMP SLOSHING 

(28 MINBiMBJM TANK DIAPdETEW bViLS%, BE LIMITED TO ENSURE SETTLING 

69 TANK (DUTLET OR VENT hqAV BE REQUIRED TO BE OFFSET 
FROM CENTERLINE 

O LARGER FEEDLIMES MAY BE WEQUlRED FOR GRAVITY FEED 

@ A \LOW GRAVITY FLUID QUANTITY GAGE MAY BE REQUIRED FOR 
LOADIFdG ACCURACY 

Figure  1 5  

SU M Fk4A.F3Y 

43 A .%ETHER CAN PRODUCE SUFFICIENT ARTIFICIAL GRAVITY TO 
SiRAPLiFV PROPELLANT TRANSFER TO AN OTV FROM AN 
GNI-BRBBT DEPOT 

f#A,RTIN MARIETTA UNDER CONTRACT TO NASA, JOHNSON 
SPAACE CENTER BS STUDYING THE FEASIBILITY, DESIGN 
REQUIREMENTS, AND OPERATIONAL LIMBTATIONS OF USING A 
JE 'THER FOR PROPELLANT TRANSFER 

@ PRIMARY CONCERN IS SLOSHjNG 

Q OPERATIONS TO TRANSFER MEN AND MATERIAL BETWEEN END 
MASSES  WILL REQUIRE EXAMINATsON 

e POSSIBLE TRANSFER ALONG TETHER 

@ TESTHERED REFUELING DEPOT APPEARS TO HAVE MINIMAL 
EFFECT ON OTV 

Figure 1 6  



OTV FLUID MANAGEMENT SYSTEMS 

L. H a s t i n g s  
NASA M a r s h a l l  Space F l i g h t  Cen te r  

Design,  per fo rmance,  and t e c h n o l o g y  i s s u e s  a s s o c i a t e d  w i t h  reduced 
g r a v i t y  p r o p e l l a n t  management f o r  O r b i t a l  T r a n s f e r  V e h i c l e s  (OTV's )  have been 
rev iewed .  The i n s p a c e  c r y o g e n i c  management s t a t e - o f - t e c h n o l o g y  w i l l  
s i g n i f i c a n t l y  a f f e c t  t h e  o v e r a l l  c o n f i d e n c e  l e v e l  a s s o c i a t e d  w i t h  a r e s u p p l y  
m i s s i o n  and p r o p u l s i o n  per fo rmance.  Thus, a l t h o u g h  m i s s i o n  r e q u i r e m e n t s  a r e  
f r e q u e n t l y  used t o  d e t e r m i n e  t e c h n o l o g y  r e q u i r e m e n t s ,  i t  i s  a l s o  a p p a r e n t  t h a t  
t e c h n o l o g y  a v a i l a b i l i t y  d r i v e s  m i s s i o n  r e q u i r e m e n t s .  Cryogen r e s u p p l y  
sequences, t i m e l i n e s ,  c o n t r o l s ,  and a s s o c i a t e d  c rew i n v o l v e m e n t  a r e  a17 
a f f e c t e d  by  t h e  t e c h n o l o g y  s t a t e .  A d d i t i o n a l l y ,  OTV p r o p e l l a n t  t ankage  
c o n f i g u r a t i o n s ,  t ankage  thermodynamic c o n d i t i o n s ,  a c c e l e r a t i o n  env i ronmen t ,  
p r o p u l s i o n  i n t e r f a c e s ,  and i n s t r u m e n t a t i o n  a r e  s i g n i f i c a n t  f a c t o r s .  B a s i c  
p r o p e l l a n t  t r a n s f e r  phases examined t h a t  d r i v e  o r b i t a l  s e r v i c i n g  r e q u i r e m e n t s  
i n c l u d e :  ( 1 )  t ankage  p r e c o n d i t i o n i n g  ( p u r g i n g ,  v e n t i n g ,  e t c . ) ,  ( 2 )  tankage 
c h i l l d o w n ,  and ( 3 )  p r o p e l l a n t  f i l l .  P r o p e l l a n t  management s u p p o r t  o f  t h e  BTV 
p r o p u l s i o n  phases i n c l u d e s  eng ine  r e s t a r t  r e q u i r e m e n t s  ( p r e s s u r i z a t i o n ,  
c h i l l d o w n ,  b u r n  d u r a t i o n ,  e t c . )  and o r b i t a l  c o a s t  between eng ine  b u r n s .  
Techno logy  a c t i v i t i e s  i n  s u p p o r t  o f  i d e n t i f i e d  t e c h n o l o g y  i s s u e s  a r e  reviewed. 



SPACE-BASED orv  PROPELLANT REQUIREMENTS 

ASSUMPTIONS: 

RL10-116 ENGINE 
(Isp = 460 SEC) 
REUSABLE STAGE 

@ AEROASSIST REENTRY 

(KG X 103) 
GEO PAYLOAD WEIGHT 

Figure 1 

The a v e r a g e  p a y l o a d  w e i q h t  r e q u i r e d  t o  b e  t r a n s p o r t e d  f r o m  LEO t o  CEO 
w i l l  be i n  t h e  r a n g e  o f  5 , 0 0 0  t o  1 4 , 0 0 0  p o u n d s .  The  u p p e r  r a n q e  o f  p a y l o a d s  
is n o r m a l l y  a s s o c i a t e d  w i t h  manned GEO r o u n d t r i p  m i s s i o n s .  The  r e s u l t a n t  
p r o p e l l a n t  r e q u i r e m e n t s ,  b a s e d  o n  t h e s e  p a y l o a d  w e i q h t s ,  r a n g e d  f r o m  a p p r o x i -  
m a t e l y  2 4 , 0 0 0  t o  7 8 , 0 0 0  p o u n d s .  The  c h a r t  o n  t h e  o p p o s i t e  p a g e  g r a p h i c a l l y  
p o r t r a y s  t h e s e  r e q u i r e m e n t s .  



OTV CRYOGENIC HANAGEHENT CONSIDERATIONS 

PRESSURIZAT ION ( M U L T I S T A R T )  

@ PRE-PRESS: HELIUM 

@ MAIN ENGINE RUN: ZERO G T H E R M O D Y N A M I C  V E N I  

0 LHp TANK: HOT GH2 @ VENTING UillTMQUT R E S E T T L I N G  
* LO2 TANK: HELIUM @ DESTRATllilCABBCIN 

REUSABLE M U L T I L A Y E R  I N S U L A T I O N  

@ LfMITS BOILOFF LOSSES R E S E T T L I N G  DVNPhMICS 
c DRIVES VENTING REQUIREMENTS 

F L U I D  T R A N S F E R I R E S U P P L Y  

S T A R T  B A S K E T  OR T A N K  

r3 VAPOR-FREE LlOUlD FOR RESTART F E E D  SYSTEM INTERFACES 
r REFILL WITHOUT VAPOR 

ENTRAPMENT REQUIRED NPSP 

0 FLOWRATE 

PRE-START CHILLDOWN 

0 START-UP/SHUTDOWN SWnGES 

e ACCE L E ~ A T I O N  ITwnv!;l r 

HEAT LEAK 

0 MASS GAGING 

Figure 2 
1 l u l d  mariaqernent o f  a n  OTV w i l l  r e q u l r e  c o m p o n e n t ,  s u b s y s t e m ,  ant i  s j s  c n  

d r v e l o a ~ i i e n t  e n i p h a s l s .  ' r h e  c l l a r t  o n  t h e  o p p o s i t e  p a q e  p ~  c t o r l a l  l y  s h o w s  t i h i .  

ii1a)or a r e a s  t l i a t  m u s t  b e  a d d r e s s e d  I n  tile d e s l g n  o f  a  c r y o q e n l c  O I ' V .  Some, ol 
t h e  nick j o r  i s s u e s  l n v o l v e d  I n  t h e  d e s l q n  a r e  n o - l l q ~ l l d  v e n t l n q ,  s t r a t  I 1 l cd t  I oil, 
vaF1or c n t r a p m e n t  I n  t h e  s t a r t  b a s k e t ,  e n q i n e  f e e d  s y s t e m  r e q u i r e m e n t  s a1it1 
r e u s a h l l i t y .  S e v e r a l  l t e m s  w l l l  r e q u l r e  o r b l t a l  t c s t l n g  f o ~  v e r l f l c a t l o i i  o f  
t h e r r  p e r f o r m a n c e  ( e . g .  thermodynamic v e n t ,  f  l u l d  d y n a m i c s ,  s t a r t  ba s i . . e t ,  
f l u ~ d  t r a n s f e r ,  e t c . ) .  A l s o ,  l t  1s  i m p o r t a n t  t o  n o t e  t h a t  t h e  t h e r m o d y n a m i c ,  
f 1 u1c-l ~ r ~ t x c l ~ a n ~  c  a n d  h e a t  t r a n s f e r  interactions b e t w e e n  c o m p o n e n t s  a n d  subsyf , t ixrnr  
r i ~ u s t  t ~ c  a d t i r c s s e d / u n d e r s t o o d  t o  a s s u r e  p r o p e r  s y s t e m  r n t e q r a t l o n .  Tot  e x a m p i e ,  
tlie 7 e r o  (; v e n t  s y s t e m  des l c j r i  1s d r l v e n  b y  h e a t  l e a k  c o n t r o l / d l s t r l b u t ~ o r i .  
S l m i l l a r l y ,  t h e  s t a r t  l l a s k c t  l l q u l d  r e t e n t l o n  c a p a b l l l t y  1s d e q r a d e d  b y  
lnc re ; l s r>< ;  ~ n  f e e d  s y s t e m  h e a t  l c a k ,  p r e s s u r l z a t l o n  q a s  t e m p e r a t u r e ,  a r ~ t l  p ropr  1 - 
l a n t  t c r ~ ! r ? e r a t l ~ r e .  1:riqine s y s t e m  r e - s t a r t / r u n  r c q u l r e m e r l t s  or) p r ~ p e l l ~ ~ r ~ t  
c o n d ~ t  i o n s  s l q ~ ~ i f i c a n t l y  a f f e c t  thermodynamics w l t h l n  t h e  t a n k  a n d  st'rrt b i s k c t  
d e s i g n .  



OTV CRYOGENIC HANAGEHENT CONS IDERAT IONS 

a PRE-PRESS. H E L I U M  

a M A I N  ENGINE R U N ,  ZERO G THERMODYNAMIC VENT 
LH2 TANK:  H O T  C H 2  

S V E N T I N G  W I T H O U T  R E S E 7 1 L I N G  
LO2 T A N K :  H E L I U M  

@ D E S T R A T l F l C A T l O N  

REUSABLE MULTILAYER INSULATION 

LIMITS BOILOFF LOSSES 

e DRIVES VENTING REOUIREMENTS 
RESE r T L l N G  DYNAMICS 

B:bUUD TRANSFERIRESUPPLY 

START BASKET OR TANK 

a VAPOR-FREE L I O U l D  F O  
FEED SYSTEM INTERFACES 

e REFILL WITHOUT VAPOR 
ENTRAPMENT REOUIRED 

TO ENGINE 

0 FLOWRATE 

* PRE-START CHILLDOWN 

iB STRUCTURAL SUPPORTS 0 START-UPBHUTDOWN SURGES 

ACCELERATION lTHRUS11 

H E A T  LEAK 

B T I l E l M A L  C O A r l N G  STABILITY * MASS CAGING 

Figure 3 

F l u i d  m a n a q e m e n t  o f  a n  OTV w i l l  r e q u i r e  c o m p o r l c n t ,  s u b s y s t e m ,  a n d  s y s t e m  
d e v e l o r ~ ~ ~ l e r ~ t  e m p h a s i s .  'I'he c h a r t  o n  t i l e  o p p o s i t e  pacle p i c t o r i a l l y  s h o w s  t h e  
n i a j o r  a r e a s  t h a t  m u s t  b e  a d d r e s s e d  i n  t h e  d e s i g n  o f  a c r y o g e n i c  O T V .  Some o f  
t h e  m a j o r  i s s u e s  i n v o l v e d  i n  t h e  d e s i g n  a r e  n o - l i q u i d  v e n t i r l q ,  s t r a t i f i c a t i o n ,  
v a i ' o r  e n t r a p m e n t  i n  t h e  s t a r t  b a s k e t ,  e n g i n e  f e e d  s y s t e r n  r e q u i r e m e n t s  a11d 
r c ~ u s ~ l l ~ i l i t y .  S e v e r a l  items w i l l  r e q u i r e  o r b i t a l  t e s t i n g  f o r  v e r i f i c a t i o n  o f  
t h e i r  p e r f o r r r l a n c e  ( e . 9 .  t h e r m o d y n a m i c  v e n t ,  f l u i d  d y n a m i c s ,  s t a r t  b a s k e t ,  
f l u i d  t r a n s f e r ,  e t c . ) .  A l s o ,  i t  i s  i m p o r t a n t  t o  n o t e  t h a t  t h e  t h e r m o d y n a m i c ,  
f l u i c l  m e c l r a n i c  a n d  h e a t  t r a n s f e r  i n t e r a c t i o n s  b e t w e e n  c o m p o n e n t s  a n d  s u b s y s t  erns 
iiii~slr l)c a d t i r e s s e d / u n d e r s t o o d  to  a s s u r e  p r o p e r  s y s t e m  i n t e g r a t i o n .  F o r  e x a m p l e ,  
t l ~ e  z e r o  (: v e n t  s y s t e m  d e s i g n  i s d r i v e n  b y  h e a t  l e a k  c o n t r o l / d i s t r i b u t i o n .  
S i m ~ l i a r l y ,  t h e  s t a r t  b a s k e t  l i q u i d  r e t e n t i o n  c a p a b i l i t y  i s  d e q r a d e d  b y  
i r l c r c a s c ? ~  i n  f e e d  s y s t e m  h e a t  l e a k ,  p r e s s u r i z a t i o n  q a s  t e ~ r l p e r a t u r e ,  ant1 p r o p c l -  
l , i i i t  t c n i l ~ e r a t u r e .  E n g i n e  s y s t e r n  r e - s t a r t l r u n  r e q u i r e m e n t s  o n  p r o p e l l a n t  
c o i i d i t i o n s  s i g n i f i c a n t l y  a f f e c t  t h e r m o d y n a m i c s  w i t h i n  t h e  t a n k  a n d  s t a r t  b a s k e t  
c i e s  i q n .  



ORBIlAL CRYOGEN TRANSFER CONSlDERATlONS --- 

SUPPLY TANK (DEWAR) 

@ STORAGE/VENTING/REFRIGERATION/RESUPPLY 
@ ACOUISITION/EXPULSION 

o LIQUID ORIENTATION 
* BOILING/SCREEN DRYING 
e PRESSURIZATlON 
*OUTFLOW RATE 
.RESIDUALS 

RECEIVER (OTV) 
@ PRECHILL 

@ INLET FLOWRATE/DISTRIBUTIOM 
.WALL CHILLDOWN 

N O  VENT FlLL 
s NON-EQUILIBRIUM TMERMOD\fNAMlCS 
@ HELIUM PRESENCE 

@ START BASKET REFILL 
@ MASS GAUGING 

@ LlOUlD SUBCOOLING 
@ MASS GAUGING 

CAPILLARY CHANNELS 

VAPOR.COOLED SHlE L D  

START BA!;KET 

OUTER SHELL 

TRANSFER LINE 

69 CHILLDOWN 
69 PRESSURE SURGES 
@PUMP VS. PRESSURE TRANSFER 

F i g u r e  4 
One of t h e  p r i m a r y  f l u i d  mapaqenrent r e q u i r e m e n t s  w i l l .  b e  t i l e  t rc lns f th r  

of b o t h  LOX and  L,H i n  a  z e r o - q  e n v i r o n m e n t .  Both  f i l l i n g  o f  t h e  O'I'V t a r i k s  
and d e l i v e r y  o f  t h &  p r o p e l . l a n t  t o  t h e  e r ~ q i n e  m u s t  b e  c o n s i d e r e d .  The c h a r t  
on  t h e  o p p o s i t e  p a q e  d e s c r i b e s  t h e  m a j o r  a r e a s  t h a t  m u s t  b e  i n v e s t i q a t e d ,  
The s u p p l y  t a n k  c o u l d  b e  a n  o r b i t a l  s t o r a g e  f a c i l i t y  l o c a t e d  a t  t h e  S p a c e  
S t a t i o n .  The r e c e i v e r  t a n k  would b e  t h e  O'rV LOX and  LF12 t a n k .  P r i m a r y  
i s s u e s  t o  b e  a d d r e s s e d  on t h e  OTV a r e  t a n k  p r e c h i l l ,  v e n t  v s .  n o - v e n t  f i l . 1 ,  
s t a r t  b a s k e t  r e f i l l  a n d  mass g a u g i n q .  O t h e r  a r e a s  r e q u i r i n g  s t u d y  a r e  
t r a n s f e r  l i n e  p r e s s u r e  and  t e m p e r a t u r e  t r a n s i e n t s  a n d  pump v e r s u s  p r e s s u r e  
f e d  f l u i d  t r a n s f e r .  



OTV TANK INSULATION EFFECTS ON VEHICLE PERFORMANCE 

___________-- --------------- BOIL-OFF 

' INSULATION 

NET EFFECT 

I " " ~ " " I " " ~ " " ~ " "  1 ' '  ' r l ' ' ' ' -  

0 200 400 600 800 1000 1200 
(LB) 

1 1 I I 
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F i g u r e  5 

The design of the insulation systern for both the hyclrogen and oxygen 
tanks on a space based OTV will be optimized to provide rllaxirnuln payload 
delivery capability to GEO. A tradeoff between insulation weiqht and pro- 
pellant boiloff provides a characteristic curve such as shown on the 
opposite page. The design optimization is dependent on how much time after 
propellant loading will be required at LEO, durirlg transfer from LEO to GEO 
and at GEO. Since the environment at LEO is generally wanner than at GEO 
and assuminq equal stay times at both LEO and GEO, the LEO environment would 
dictate the insulation desiqn. Based on the assumptions specified, a total 
insulation weiqht of 180 lb would be optimum. 



OTV TANK lNSULATlON REQUIREMENTS 

LOX/LH2 MIXTURE RATIO = 6 

INSULATION K = 5 X ~ Q - ~ B T U / H R  F T  . OF 
(8.6 X JISEC -M O K )  

i .........................................*., TANK 
_CC 

r I I I 7 
0 56) loo ((KG) 150 200 

TOTAL INSULATION WEIGHT 

Figure 6 

Rased o n  t h e  a s s u m p t i o n s  m a d e  o n  t h e  p r e v i o u s  p a q e ,  t h e  i n s u l a t i o n  
r e q u i r e m e n t s  f o r  b o t h  t h e  h y d r o g e n  a n d  o x y g e n  t a n k  a r e  s h o w n  i n  t h e  g r a p h  
o n  t h e  f a c i n g  p a g e .  As i n d i c a t e d ,  b a s e d  o n  a n  o p t i m u m  t o t a l  i n s u l a t i o n  
w e i g h t  o f  1 8 0  l b ,  t h e  r e s u l t a n t  i n s u l a t i o n  t h i c k n e s s e s  f o r  t h e  h y d r o g e n  
a n d  o x y g e n  t a n k  a r e  a p p r o x i m a t e l y  0 . 7  a n d  0 . 1  i n c h e s ,  r e s p e c t i v e l y .  T h e  
i n s u l a t i o ~ ~  t h i c k n e s s e s  o n  e a c h  t a n k  a r e  t a i l . o r e d  t o  m a i n t a i n  t h e  p r o p e r  
p r o p e l l a n t  m i x t u r e  r a t i o .  



OTV kH2 BANK PRESSURES DURING ORBITAL C O A S T  
STWATIF!CATION/MBXONG EFFECTS 

Figure 7 
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i ' r o p e l l a n t  c o n d i t i o n s  d u r i n g  o r b i t a l  c o a s t  p e r i o d s  between e n g i n e  b u r n s  a r e  i n i p o r t a n t  
f ro i l l  s e v e r a l  s t a r l d p o i n t s .  F o r  example, tankage  h e a t  l e a k  and i t s  d i s t r i b u t i o n  w i t h i n  t h e  
p r o p e ' l l a n t  d e t e r r ~ l i n e s  t h e  u l l a g e  p r e s s u r e  r i s e  r a t e s  and r e s u l t a n t  v e n t  r a t e s l c y c l i n g .  
To mir i i rn ize p r e s s u r e  r i s e  r a t e  and t r a n s i e n t  thernwdynamic u n c e r t a i n t i e s ,  t h e  g e n e r a l  approach  
i s  t o  assure  t h a t  tankage  s i d e w a l l  and p e n e t r a t i o n  h e a t  l e a k  i s  u n i f o r m l y  d i s t r i b u t e d  w i t h i n  
t h e  b u l k  l i q u i d ,  and t h a t  good h e a t  exchange between t h e  u l l a g e  and l i q u i d  e x i s t s .  To rerrlove 
wncer1:al'nties a s s o c i a t e d  w i t h  p a s s i v e  m i x i n g / d e s t r a t i f i c a t i o n  i n  reduced  g r a v i t y ,  a c t i v e  
m i x i n g  t e c h n i q u e s  a r e  g e n e r a l l y  employed i n  OTV c o n c e p t  des igns .  

NOTES: 

03726) KG (8200 LBS) 

@HEAT LEAK = 47W (160 BTU/HR ) 

WITH STRATI FlCATlON 

WITH MIXING 

1 1 ! I 
90 20 30 40 50 

A d d i t i o n a l l y ,  t h e  e n e r g y  d i s t r i b u t i o n  w i t h i n  t h e  t a n k  can  s i g n i f i c a n t l y  a f f e c t  o t h e r  
sLibsy~,tern f u n c t i o n s .  I f  a  c a p i l l a r y  s t a r t  b a s k e t  i s  u t i l i z e d ,  l o c a l i z e d  s t r a t i f i c a t i o n  w i t h i n  
aiid n e a r  t h e  b a s k e t  s h o u l d  be p r e v e n t e d ,  i .e., l o c a l i z e d  s u p e r t i e a t i n g / b o i  1 i n g  car! occur .  A ?  so, 
pl.oper f e e d  system thermodynamic c o n d i t i o n s  must  be e s t a b l i s h e d  f o r  each  e n g i n e  burn .  

ULLAGE VOLUME (%) 



OTV LO2 TORUS TANKS 
PROPELLANT MANAGEMENT TECHNOLOGY ! S U E S  

@ NO IN-FLIGHT EXPERIENCE WITH REDUCED GRAVITY FLUIDIMEAT TRANSFER 
BEHAVIOR IN  TORUS TANKS. 

@ ACQUISITION DEVICE R&D REQUIRED 

@ PROPELLANT SETTLING 

@ THERMAL ISOLATION 

@ RESIDUALS 

@ ORBITAL PERFORMANCE VERIFICATION 

O PRESSURiZATlON/VENTDNG 

@ MULTIPLE ENGINE RESTARTS/PRESSURIZATION EFFICIENCY 

@ ZERO G VENTING 

@ STRATlFICATIONIDESTRATI FlCATlON 

@ ACOUlSlTlON SYSTEM INTERFACES 

@ SLOSH 

@ PROPELLANT C. G./VEHICLE CONTROL 

@ BAFFLES 

@ INSULATION 

@ UNIQUE TANK SHAPE EFFECTS ON PERFORMANCE 

O PURGE 

F i g u r e  8 

The s ta te-o f - techno logy suppo r t i ng  LO f l u i d  management i n  t o r u s  tanks  i s  weak. Due 
t o  i t s  unique geometry, t he  t o r u s  shape inProduces a  wide range o f  i ssues t h a t  have inot been 
addressed i n  pas t  technology e f f o r t s .  P r o p e l l a n t  a c q u i s i t i o n ,  p r e s s u r i z a t i o n ,  vent ing ,  
s t r a t i f i c a t i o n / d e s t r a t i f i c a t i o n ,  s l osh ing ,  i n s u l a t i o n ,  and hea t  l e a k  d i s t r i b u t i o n s  a re  a l l  
areas r e q u i r i n g  R&D e f f o r t s  s p e c i f i c a l l y  a p p l i c a b l e  t o  t o r u s  tanks. 



TANK PRE-CHILL PREPARATIONS SUMMARY 

8 DILUTBBM OF HELIUM RESIDUALS PRIOR TO REFUELING REQUDWED TO PREVENT: 

i@ EXCESIVE PRESBBRES AT END OF F ILL  

rB INACCURATE KNOWLEDGE OF PROPELLANT B I m R  PWESUWES 

1, START B S K E T  HELIUM ENTRAPMENT 

co INACCURATE THERMODYNAMIC M B  GAUGING 

9 APPROXIMATE DILUTION LEVELS REQUIRED 

(B LHz < .&KG (1 LmB FURTHER DOLUTIW REQUIRED I F  
THERMODVNMSC M A S  GAUGING 

10 LO2 < .W KG (.2 L S )  UTILIZED 

@ PPRBXEDURALhECHNOLNY CONCERNS 

DURATION OF VENTIHOLD CYCLES 

F i g u r e  9 

Tlre i n i t i a l  phase of o rb i ta l  t rans fe r  i s  "prechi l l  preparations." I f  no heliurn 
pre!,surant qases have been used i n  the tankage to be f i l l e d ,  the prechi l l  preparations 
w o i ~ l d  be rili~irrial. Ilowever, i f  heliurir i s  present then the tankage must be purged and 
vented unti I the  tieliun i s  reduced t o  an acceptable l eve l .  The "acceptable level"  i s  
det~ni i ined based on end-of-f i l l  pressures/achievernent of n~axinlurii f i l l  coritrol , c a p 1  1 lary 
screeri acquisitiori system pressure, and therniodynarrlic mass gaging ( i  f  used). The LU 
system s e ~ i s i t i v i t y  to Ileliuni i s  s ign i f ican t ly  g rea te r  than with LH2. Lack of o r b i t a ?  
experier~ce and in-orbi t measurerrent of residual he1 ium magnitudes a r e  the primary concerns 
i n  developing a  su i tab le  purge approach. 



TANK PRE-CHILL PREPARATIONS SUMMARY 

d) DILUTION 86: HELIUM RESIDUALS PRIOR TO REFUELING REQUIRED TO PREVENT: 

@ EXCESSIVE PRESSURES AT END OF FILL 

@ INACCURATE KNOWLEDGE OF PROPELLANT VAPOR PRESSURES 

@ START BASKET HELIUM ENTRAPMENT 

@ INACCURATE THERMODYNAMIC MASS GAUGING 

(b @PROXIMATE DILUTION LE VELS REQUIRED 

@ LWZ < .&KG (1 ern)  FURTHER DlLUTlOBU REQUIRED IF  
TNERMODYNMIC MASS GAUGING 

e ~0~ -G .w KG (.2 e s )  UTILIZED 

O PROGEDURALRECHNOLW CONCERNS 

868 KNBWLENE OF HELIUM RESIDUAL MAGNITUDE 

Figure 10 

The i n i t i a l  phase o f  o r b i t a l  t r a n s f e r  i s  " p r e c h i l l  p repara t ions . "  If no he l i um 
pressurant  gases have been used i n  t he  tankage t o  be f i l l e d ,  t he  p r e c h i l l  p repa ra t i ons  
would be minimal.  However, i f  he l ium i s  p resent  then t h e  tankage must be purged and 
vented u n t i l  t he  h e l i w n  i s  reduced t o  an acceptab le  l e v e l .  The "acceptab le  l e v e l "  i s  
determined based on e n d - o f - f i l l  pressures/achievement o f  rnaximum f i l l  c o n t r o l ,  cap i  1 l a r y  
screen a c q u i s i t i o n  system pressure,  and thermodynamic mass gaging ( i f  used). The LO;, 
system s e n s i t i v i t y  t o  he l i um i s  s i g n i f i c a n t l y  g r e a t e r  than w i t h  LHz. Lack o f  o r b i t a  I 
exper ience and i n - o r b i t  measurement o f  r e s i d u a l  he l i um magnitudes a r e  the  p r imary  concerns 
i n  deve lop ing a s u i t a b l e  purge approach. 



OTV kH2 TANK THERMODYNAMICS DURING CHILLDOWN 

TANK PRESSURES 

0 
T I M E  

6044 

TANK WALL TEMPERATURES 
EXAMPLE CASE: 

@74  FA^ ( 2 6 W  ~ 8 ~ )  T A N K  

@APPROXIMATE L H 2  

CHARGE PER CYCLE 

13 KG (28  LB) ---- 
20 K G  (43 LBI---- 

I 8 

I oc I-------------- I - 
bdJ - 

0 T I M E  B 
15-30 M I N U T E S  

F i g u r e  11 

Chlilldown i s  accomplished by introducing propellant in to  a tank in such a manner that  good 
heal: exciiar~ge between the high te~r~perature walls and chilldown l iquid i s  assured. Ttiern~odynamic 
c a l c a l a t i o n s  indicate tha t  the amount of propeilant required t o  c h i l l  a tank should be r e l a t i v ~ l y  
snia' I ,  1;: i s  therefore doubtful tha t  chilldown procedure se lec t ion  wil l  be driven by n~ini~riization 
o f  chS1ldown l iquid.  However, the coinplicated thermodynamic, boi l ing heat t r a n s f e r ,  and f l u i d  
dynaii!ic piieno~iieria involved cannot be ana ly t ica l ly  modeled with confidence. Hence, issues invoi ving 
def in i t ion  of i n l e t  flow d is t r ibu t ion /ve loc i ty ,  charge/hold duration and n~axirnum pressure,  vent 
dur; i t lon,  and instrunlentation t o  monitor chi 11 down progress remain. 



lNlT IAL  WALL- TEMPERATlJRE EFFECTS ON O T V  
TANK PRESSURES A F T E R  F I L L  

50 

40 

NOTES: 

6997% r l N A L  F ILL  
CONDITION ASSUMED 

- 30 @ 74 PA3 12600 F T ~ L  LM2 TANK 
9 

69 ze ~3 ( I ~ I P O  FT:? LO* TANK xl 

20 

10 

F i g u r e  1 2  

Receiver tank c h i l l d o w n  must be conducted whenever thermal energy s t o r e d  i n  t he  tank. w a l l s  
i s  s u f f i c i e t i t  t o  prec lude a nonvented f i l l  opera t ion .  For exaiuple, w i t h  i n i t i a l  w a l l  teniperat i i res 
o f  450°R, the  LH2 and LO2 tanks f i n a l  pressures would be 48 p s i a  and 18 ps ia ,  r e s p e c t i v e l y ;  hence, 
Ltl2 ch i l l down  would be requ i red ,  whereas LO2 c h i l l d o w n  would be o p t i o n a l .  A Ltf2 tank  w a l l  temper- 
a t u r e  o f  l e s s  than 2 5 0 ' ~  probab ly  w i l l  be requ i red.  



TRANSFER LBNEJTANK CHILLDOWN SUMMARY 

REOUIREMENT:  REDUCE TRANSFER L INEDANK WALL TEMPERATURES SUFFICIENTLY 
TO PREVENT EXCESIVE LINE PWESUREIFLOW SURGES A N D  TO 
ENABLE A NON-VENTED TANK FlLL 

8 PROCIEDURALWECHNOLOGY CONCERNS: 

@ SEMI-EMP8W~CAk MODELING LACKS EXPERIMENTAL D A T A  

e LACK OF HARDWARE EXPERIENCE 

WALL CHILLDOWN CRITERION: CURRENT RANGE - S Q K  TO 
(17WR TO R )  

t# L A C K  OF TRANSFER LINE CWlkLMBrdN EXPERIENCE - PREVENTION OF EXCESIVE 
SURGES AND LINE LOADS 

F i g u r e  1 3  

Based on t h e  p r e c e d i n g  d i s c u s s i o n s  o f  c h i  11  down i s s u e s ,  o p t i l n u n ~  o p e r a t i o n a l  e f f i c i e n c y  
ancl i r i i n i i i i i ~~n  c o r n p l e x ~ t y l c r e w  titnc a r e  a p p a r e n t l y  t h e  p r i m a r y  q o a l s  ( a s  ap[tosed t o  m i n i m i z i n g  
pj-vl)el l a r i t s  usrd for. c l i i  1 idown).  t l o w c ~ v ~ r ,  d e f i n i  t i o t r  o f  c h a r g e / t ~ o l d / v e r ~ t  c y c l e s  t h a t  w i  1 1  
a l l o w  ach ieverwr i t  o f  t l rese g o a l s  c a n n o t  o c c u r  u n t i l / u n I e s s  o r b i t a l  e x p e r i e n c e  arid d a t a  a r e  
acciui red.  



T V  LH2 TANK PRESSURES DURING ORBITAL FILL 

POOR CIRCULATION (SIGNIFICANT ULLAGE HEATING) 

A \ \ \ 'RANGE OF POSSIBILITIES \ \ \ \ \ \ 

NEAR EQUILIBRIUM 
( 0 0 0 0  MIXING)  

CONSIDERATIONS: 

TANK WALL RESIDUAL HEAT ,BBSB)RPBlQFB 

.ULLAGE COMPRESSION . ULLAGE/LIOUID HEAT EXCHANGE 

~NON-CONDENSIBLE GAS 

.ZERO G CIUANTITY GAGING 

10 I 
FILL LEVEL 

F i g u r e  1 4  

Assuming t h a t  t h e  p resc r i bed  tank c h i l l d o w n  temperatures have beer1 achieved, then the  
nonverlted f i l l  procedure can be i n i t i a t e d .  However, care  must be taken t o  assure t h a t  vent i r ig  
i s  n o t  necess i t a ted  by excess ive  pressure  d u r i n g  f i l l .  Good m i x i n g  must occur  th roughout  the  
f i l l  process t o  prevent  excess ive  heat t r a n s f e r  t o  t h e  u l l a g e  and cor respond ing pressure  
increases. A d d i t i o n a l l y ,  tank  w a l l  r e s i d u a l  heat  absorption/distribution, u l l a q e  cornpsession, 
noncondensible gases, and t h e  measurement o f  t r a n s f e r r e d  mass a re  tssues t h a t  must be addressed. 



TANK FILL SUMMARY 

@ REd3UBREMENT: L H p  & LO2 TANK FILL WITHOUT VENTING 

@ PRBCEDURAL/TECHNOLCoG&r CONGE WNS: 

O ASUWANGE OF ADEQUATE ClRCUkATlON TO MAINTAIN NEAR-THERMAL 
EOUlkBBRBUBul, i.e., LOW P W E S U R E S  

GOOD MIX!NG/MEAB EXCHANGE BEWEEN ULLAGE/LIQUID REQUOWED 

@ EXiSTlNG SEMI-EMPIRICAL MODELS LACK EXPERIMENTAL DATA 

e LACK OF IN-FLIGHT HARDWARE EXPERIENCE 

@ MECHANICAL MlXER PROBABLY REQUIRED 

@ LACK OF ZERO-6 M A S  GAUGING DEVICE 

@ SPECIAL FILL PROVISIONS FOR START B M K E T  

@BLEED LINE FOR DIRECT FILL OF W K E T  

e ACTIVE CIRCULATION TO A S U R E  ENTRAWED VAmR G O L U B E  

SUPPLY TANK VAPOR BRESURE < 2.2 ~ N / M Z  (15 B Q A ) ,  
NO HELIUM P W A G E  ALLOWABLE 

4) PREVENTION OF EXCESIVE TRMSFER LINE LOADS 

Figure  1 5  

Scnli -ernpi  r i c a l  ~ r l o d e l i r i y  of t h e  f i l l  p r o c e s s  i s  r e q u i r e d  t.o d c f  i n e  t h e  
; : 1 l c r 3 c t i n q  i 1 u i . d  a n d  t h e r r r i a l  p t l e n o n ~ e n a ;  h o w e v e r ,  e x i s t i r i g  m n d e l s  l a c k  e x p e r i -  
iucXrit ~l v c r i  f i c ; r t  i o n .  A c t i v e  m i x i n q  p r o h i l b l y  w i  1 l be r e q u i r c d  t r )  i l s s u r e  n e a r  

: , r l l i i  1 i k ~ r i u r n  t I i ~ ~ r n i o d y n ; l ~ r z i c  r c ? n i l  i t i o n s .  ' I ' i ~ e  I <ac'k of a  z e r o  (; cju'111 t i t y (JLILJ'J" i S 

C? s l o n i f i c n n t  h a n d i c a p  i n  a c t ~ i e v i n q  a 9 7 %  f i l l  c o n d i t i o n .  S p e c i a l  c o n s l d c r a -  
t i o r u s  a r e  i n v o l v e d  i n  i n t e r t a c i n q  w i t h  c a p i l l a r y  s t a r t  b a s k e t s  t o  a s s u r e  t l i c 2 t  

v . ? l )o r  c ~ i t r a p i n e n t  d o e s  n o t  o c c u r  d u r i n q  t a n k  f i l l .  A l s o ,  s u r ~ p l y  v e s s e l  e o n i l i -  
t ior>s iiirlsL be c o n t r o l l e d  t o  p r e v e n t  c x c c s s i v e  v a p o r  p r e s s u r e s  a n d  t h e  t r , i r i s f c r  
r - i i  lic'il ilri: i n t o  t h e  O'rV. 



OTV PROPELLANT TRANSFER TIMELINE 

EVENT 

@ LH2 TRANSFER 

1) INITIAL LH2 TANK VENT 

INJECT LH2 AND HOLD 

e VENT TANK 

INJECT LH2 AND HOLD 
2) PRECHILL 

@ VENT TANK 

e INJECT LH2 AND HOLD 

e VENT TANK 

3) F lLL  0 LH2 TRANSFER 

@ TOPPING FLOW RATE 

LO2 TRANSFER 

1) INITIAL LO2 TANK VENT" 

e LO2 TRANSFER 
2) F l L L  

0 TOPPING FLOW RATE 

CUMULATIVE TIME (HRS) 

1 2 

NOTE : 

0 TWO OR MORE ADDITIONAL VENT CYCLES REQUIRED IF  HELIUM PRESENT 

F i g u r e  1 6  

D e f i n i t i o n  o f  the  t r a n s f e r  tisrl i n e  cannot be accomplished w i t h  conf idence u n t i  I 
o r b i t a l  exper ience and data  become ava i l ab le .  However, t he  sequence o f  events can be 
es tab l i shed  w i t h  reasonable conf idence. Based on c u r r e n t  models, t h e  t o t a l  t r a n s f e r  
t ime  i s  expected t o  r e q u i r e  on the  o r d e r  o f  3 hours. 



MSFG 
CRYOGENIC MANAGEMENT BREADBOARD 

b- 

oss 

@REUSABLE ALUMINIZED MLl LJASEMBkY OF TEST ARTICLE ladT eTHERMODYNAMBG WENTIMIXER BY- 
@Bl"dlWIIZES BOlLOFF LOSSES; HEAT LAMP'STRUCTURAQ SL!PPoR ENABLES VERlTlNO INDEPENDENT OF 

AEBUkCEB MORE EPlPIENSIVE SHROUD PROPELLANT POSITION IN ZERO O R W W  
DOkDlZED MLU 

~ L ~ Q ~ . D U ~ D -  WO0iFTa / pm m 
*fiUbalMm I W3lU 1 LAYER L l l A N K n  

PRESSURIZASIOPI 

FLOW METER 
GUARD MEAT 
EXCWAMQER 

TEST ARTICLE SCHEMATIC 

6CAPBLDARI WEIEMTBOH TACIPB SUFFICBLB~T 
sFIBER4JkAS PVROE BAQ ENCLOSURE PROPELLANT FOR EWOPNE START-UP iH 

ZERO ORAMITY 
*PROVIDES PROTECTIVE ENVIRONMENT FOR MLl 

DURBNO SHVTPLE PRE-LAUNCH. LAUNCH, AND RE-ENmY 

Figure 1 7  

Var ious  deqrees o f  tech i io logy  developinent a r e  a s s o c i a t e d  w i t h  t h e  t y p e s  o f  suhsy%trn is  
t h a t  w i  11 he r e q u i r e d  i n  an OTV cryogen managenent Yysteln, i .e., t h e  tec t i i to logy  backgroui ids 
range froin subst.ant ia1 t o  w a g e r .  However, these subsystems have n e v e r  been i r i t e g r a t e d  i n t o  
a  t o t a l  OTV-type systern and r e q u i r e d  t o  p e r f o r m  s i m u l t a n e o u s i y .  T h e r e f o r e ,  a m a j o r  o b j e c t i v e  
o f  t h e  c ryoger i i c  mavagenient b readboard  prograni  i s  t o  i n t e g r a t e  advariced teclrriolocjy i ter i is  i i i t o  
a  sys tmr  l e v e l  Lllp t e s t  a r t i c l e ,  t h e r e b y  e n a b l i n g  e v a l u a t i o n  o f  t h ~ r n ~ o d y i i a n i i c ,  heat  t r a r ~ s i e r ,  
arid f l u i d  mechariic i n t e r a c t i o r ~ s / c o n t r o l s / i r i s t r u n t e i i t a t i o ~ i  w i t h i n  t h e  iirliit; o f  nor i i la l  q r a v i t y  
t e s t i r i q .  Tt i r  breadboard da ta  w i l l  bc e v a l u a t e d  t o  deterr i i i r te rrorrr~al g r a v i t y  perforciiarice and t o  
more s p e c i f  i u d l  l y  i d e n t i f y  techno loqy  qaps/concerns t h a t  ntust u l  t i n l a t e 1  y Lje assessed w i  e l i  o:,iii t a l  
e x l ~ e r i m e n t a t i o r i ,  i.e., b readboard  t e s t i n g  o f  t h i s  type  i s  a  p r e r e c l u i r i t e  t o  t h e  e v e r i t u a l  ex jcer i -  
t n e ~ i t a l  v e r i f i c a t i o n  o f  OTV-type systems i n  o r b i t .  A d d i t i o n a l l y ,  the  s y i t p t n  l e v e l  exper ie r ice  w i l l  
m i i i i tn ize  t i le  developinent r i s k  o f  o r b i t a l  c r y o q e n i c  nlanage~nent e x p e r i ~ r ~ e r i t s / f l i q h ?  systeil is i n  g e n e r a l ,  

The t e s t  a r t i c l e  tank  i s  an 8 8 - i n c h  d i a n l c t e r  o b l a t e  s p h e r o i d  w i t h  a  1 7 5  f t 3  vo lune.  [ h e  t e s t  
a r , : i c le  cor i ta ins  a l l  t h e  b a s i c  e l e n e n t s  o f  ari ear th -based OTV i l l 2  systcnl ,  i .e. ,  a  r e i ~ s a t ~ l e  m u l t i -  
1a:ier i n s u l a t i o n / j ~ u r g e  bag system, z e r o  g r a v i t y  thermodynarciic v e c i t l ~ ~ i i x e r ,  GtIe/GII2 p r e s s u r i z a t i o n ,  
s a l ~ i l l a r y  s t a r t  basket ,  and a pun ip / feed l ine  system. The i i l u l t i l a y e r  i n s u l a t i o n ,  o r y a r i i c a l l y  c o a t e d  
a l i i r i i i n ized  Kapton, was deve loped t o  r e p l a c e  t h e  # l u r e  exper is ive  r e u s a b l e  g o l d i z e d  Kdpton i c i s u l a t i o n s .  
i h i s  breadboard i n s t a l l a t i o n  r e p r e s e n t s  t he  f i r s t  system l e v e l  d e c ~ i o n s t r a t i o t i  o f  t l i e  a l u n ~ i n i z e d  
i n ~ ; i i l a t i o r i  f o r  c r y o g e n i c  a p p l i c a t i o n s .  

F i n a l  p i -e j ia ra t ions  a r e  i n  p r o g r e s s  a t  MSFI: For t t i e  b readboard  t e s t i n g .  11ii t i a l  ill2 l o d d i n g  
i s  schedu led  f o r  t h e  f i r s t  week o f  A p r i l  1984. Var ious  t e s t  p i ~ a i e s  w i l l  be c o n d ~ ~ r : t e d  i n t e n r i i  t t c n t l y  
t h r o u g h  O c t o l ~ e r  1984. 
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The Cryogenic F l u i d  Management F a c i l i t y  (CFMF) i s  expected t o  p rov ide  s i g n i f i c a n t  techfioEogy 
i n p u t s  t o  OTV development. The i n i t i a l  m iss ion  w i l l  u t i l i z e  a .28 sca le  OTV LH2 r e c e i v e r  dessel ,  
Although the CFMF supply tank  can f i l l  t h e  r e c e i v e r  t o  o n l y  about t he  30% l e v e l ,  the p r l  i i a ry  qadi 
o f  o b t a i n i n g  ch i l l dowr i  data can be achieved. An OTV rep resen ta t l v r?  purged n l u l t i l a y e r  r r ~ s u l a t ~ o n  
(MLI)  w i l l  be i n s t a l l e d  on the  rece i ve r .  The second m iss ion  w i l l  u t i l i z e  a .18 sca le  vessel  t i i a t  
can accor~rnodate a complete f i l l  procedure. A d d i t i o n a l  da ta  i n c l u d e  LH2 s e t t l  i n g / o u t f l o w ,  l ie1 r urn 
p r e s s u r i z a t i o n ,  and performarice o f  a thennodynamic vent system (TVS) :! i th a w a l l  mounted heat  
exchanger. The t h i r d  m iss ion  w i l l  a l s o  u t i l i z e  a .18 sca le  vessel .  Chi1 ldown / f i l l  data  W I  11 
aga in  be acqu i red t o  assess r e p e a t a b i l i t y  o f  t h e  m iss ion  2 r e s u l t s .  An OTV type s t a r t  b a s k e t  wlll 
be u t i l i z e d  t o  assess thennodynamic and f l u i d  niechanic i n t e r f a c e  e f f e c t s  on s t a r t  basket  per- 
fonnance, i.e., feed systeni heat  leak,  TVS ope ra t i on ,  and tank pressurization. The T V S  niay ~ n c l u d ~  
an a c t i v e  m i x i n g  system. The tank i n s u l a t i o n  w i l l  c o n s i s t  o f  a foani/MLI cor i~b inat ion .  



EXAMPLE CFMF DATA FOR 8 7 V  
hH2 TANK CHlLkDOMIN DURING TRANSFER 

NOTES 

@CHILLDOWN STRONG FUNCTION OF SIZE 

.TANK V O L t M A ~ ~  RATIO IMPORTANT 
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@CFMF INVESTIGATES SIZE EFFECTS 
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The re la t ive  chilldown responses of the CFMF .18, .28, and f u l l  scale  OTV receivers  
can be i l l u s t r a t e d  using current ly avai lable  analyt ical  1nodc.1 inq. The snial l e r  a  vessel ,  
the  more responsive i t  i s  to  heat leak and the nonequil i t ~ r i u ~ n  therrnodyr~dnlics. Thiq i s  
basical ly  because the tank volunle r e l a t i v e  to energy s tored in the walls and s t r u c t u r e  
becomes l e s s  with decreasing tank s ize.  Therefore, there e x i s t s  the concern t h a t  the 
rapid response of small vessel thermodynamicslfluid dynan~ics wil l  d i f f e r  s iqr i i f icant ly 
from the actual t rans ien ts  in  prototype vessels.  I-lowever, the CFMF design has 
incorporated the la rges t  scale  OTV vessel achievable ( .28 s c a l e )  within the cons t ra in t s  
of schedule and cost.  Additionally, LH t r ans fe r  behavior in the .28 and .18 sca le  
vessels can be co~npared, thereby provid?ng valuable scal ing e f f e c t s  data. 



SPACE STATION TECHNOLOGY REQUIREMENTS 
(SSTSC FLUID MANAGEMENT WORKING GROUP) 

@CRYOGENIC FLU ID  RESUPPLY* 

@NON-CRYOGENIC FLUID RESUPPLY* 

@ZERO-LEAKAGE FLUID COUPLINGS 

@FLUID  LEAK DETECTION INSTRUMENTATION 

@REUSABLE EARTH TO ORBIT CRYOGEN TRANSPORT 

@FLUID QUANTITY GAUGING INSTRUMENTATION 

L O N G  TERM ORBITAL CRYOGEN STORAGE* 

@CONTROL, INSTRUMENTATION & DIAGNOSTICS 

@OPERATIONS (MANNED VS. AUTONOMOUS) 

@FLUID  SYSTEM STUDY 

'MANDATORY FLIGHT TESTS 
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The Space Station Technology Steering Committee met ~n Wlllian\sburg, 
Virginia in March, 1983, to discuss technology requirements and priorlkles. 
The Fluid Management Working Group recommended that technology be pursued 
in ten areas. The chart on the facing paqe lists these recommendations ~n 
order of their priority for Space Station application. Out of the ten 
areas, three were considered to require mandatory fliqht tests. These 
three items were considered to be enablir~q tect~noloqies. 



SPACE STATION ADVANCED DEVELOPMENT 

eAD'VARIGED DEVELOPMENT TEST BED 

-- COMPONENT DEVELOPMENT TESTING 
-- LOXlLW2 SYSTEM LEVE h TESTING 

-- FLUID LEAK PREVENTIONIDEVECTIOM 

ePRC1POSED SHUTTLE FLIGHT EXPERIMENTS 

-- LONG TERM CRYOGENIC STORAGE FAC0LITV 

-- REFWBGERATIONIRELIQCBEFACTPON 
-- REMOTE CONTROLLED OR AUTOMATED PROPELLANT SERVlClNG 

@PROPOSED SPACE STATION TECHNOLOGY DEMONSTRATION IVllSSlON (VDIM) 

- PROPELLANT TRANSFER, STOWAGE & WELIQUEFACTION 
-- LONG TERM SYSTEM PERFORMANCE DEGRADATION 
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Dasec! on the anticipated need for a cryoqenic OTV at the Space Station, 
several proposals have been made to define the advanced development work that 
will. be required to support such a goal. A combination of ground testing, 
irhuttle flight testing and Space Station technology demonstration missions 
( ' l ' I ) F l k s )  are evolving as the primary activity for achieving this goal. The 
opposite page provides a brief summary of the major proposed advanced devel- 
oprnc,nt activity in the fluid management area. 
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Tim V i  nopal  
Boeing Aerospace 

As a systems i n t e g r a t o r ,  Boeing recognizes t h a t  t h e  main p r o p u l s i o n  system has 
a profound a f f e c t  on v e h i c l e  development c o s t  and schedule. S i g n i f i c a n t  engine 
we igh t  growth o r  unplanned changes i n  performance c a p a b i l i t y  have impo r tan t  i m p l i -  
c a t i o n s  i n  v e h i c l e  des ign  and m iss i on  cap tu re .  

Agreement i s  needed on man-rat ing requi rements  as these w i l l  g r e a t l y  a f f e c t  
v e h i c l e l e n g i n e  i n t e g r a t i o n .  As a minimum, e l i m i n a t i o n  o f  a l l  s i n g l e  p o i n t  f a i l u r e s  
r e q u i r e s  re-examinat ion o f  a e r o a s s i s t  concepts which r e q u i r e  l a rge ,  r e t r a c t a b l e  
engine nozz les.  P l ac i ng  t h e  nozz les  behind t h e  hea t  s h i e l d  moves l a r g e  deployed 
payloads i n  f r o n t  o f  t h e  shield-making P/L r e t u r n  imposs ib le .  The manned t r a n s f e r  
cab i s  sma l l  enough t o  e i t h e r  f i t  behind t h e  unmanned a e r o a s s i s t  dev i ce  o r  have a 
k i t t a b l e  hea t  s h i e l d ,  depending on a e r o a s s i s t  concept.  P r e l i m i n a r y  r e l i a b i l i t y  
ana lyses i n d i c a t e  t h a t  a s i n g l e  engine i s  unable t o  meet manned m iss i on  r e l i a b i l i t y  
goa ls .  An i nc rease  i n  t h e  number o f  engines corresponds t o  a decrease i n  per form- 
ance and an inc rease  i n  maintenance requi rements .  Performance analyses c u r r e n t l y  
show a 5000 t o  7000 l b  engine t h r u s t  range as optimum; however, t h e  c o s t  a n a l y s i s  
i s  expected t o  move t h e  optimum t o  a l e v e l  above 7000 I b s .  The h i g h  c o s t  o f  space 
based maintenance may have t h e  dua l  e f f e c t  o f  i n c r e a s i n g  t h e  t h r u s t  l e v e l ,  and 
d e r a t i n g  t h e  engine components t o  reduce t h e  amount o f  engine maintenance requ i r ed .  

VEHICLEIENGINE INTEGRATION ISSUES 

Q. FROM A PRIME CONTRACTOR STANDPOINT WHAT ARE KEY VEHICLEIENGINE 
INTEGRATION ISSUES? 

IMPACT OF ENGINE INTEGRATION ON CONFIGURATION DEVELOPMENT 
(DEVELOPMENT TIME, DDT&E, AND PERFORMANCE). 

r IMPACT ON MAN RATING AND MISSION RELIABILITY (OPERATING 
COST). 

Q. HOW DOES SPACE BASING IMPACT VEHICLEIENGINE INTEGRATION? 

MODULAHIZE ENGINE INSTALLATION AND/OR CRITICAL COMPONENTS 
TO ALLOW EFFECTIVE ON ORBIT SERVICING. 

HIGH SERVICING COSTS (- $20,00O/HR) MAKES DERATING ENGINE FOR 
LONG SERVICE - FREE LIFE ATTRACTIVE. 

Q. HOW DOES AEROASSIST IMPACT VEHICLEIENGINE INTEGRATION? 

ENGINE NOZZLE RETRACTION REQUIREMENT INTRODUCES SINGLE- 
POINT FAILURE MODES. 

r LARGE, HIGH EXPANSION RATIO ENGINES DIFFICUI-'7 TO SHIELD FROM 
FREE STREAM FLOW. 

F i gu re  1 
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ORMMIAL PAGE ISi 
OF POOR QUALITY 

EFFECT OF ENGINE RELIABILIIY ON SYSTEM RELIABILITY 

OTV P R O P U L S I O N  S Y S T E M  R E L I A B I L I T Y  

Figure 2 

Fresh Look Lifting Brake Designed for Space Assembly 

STS COMPATIBLE OTV MOUNTED 
USING SHUTTLE F lX lURES 

O l ' /  CAN RE EITHER GROUND 
BASEL) OR SPACE BASED 

NO NOZ7LE RETRACTION REOUIRED 

c,noss'r n w  ACCOMPLISHFD BY  
SLIDING 0 T V  ON I3AILS 

COI'JTllOL W I l I I  AEROOYNAMICSURFACES 
& FCS 

COMBINE BEST FEATURES OF LIFTING 
BRAKE & AMOTV TO INCREASE U D  
AND REDUCE SCAR WEIGHT 

SPACE ASSEMBLED PREFABRICATED 
COMPOSITE- PANELS 

RIGID OR FABRIC REUSABLE TPS 

LARGE PLANFORM AREA REDUCES 
TEMPERATURES 

NO IMPINGEMENT PROBLEM 

Figure 3 



PRELIMINARY RESULTS OF VEMICLEIENGINE 
INTEGRATION STUDY 

@ DUAL ENGINE INSTALLATIONS FAVORED 

RELIABILITY VS. OPERATING COSTS 

a ENGINES IN 7000 LB + TO 15000 LB + SIZE RANGE CURRENTLY FAVORED 

@ FUNCTION OF HIGH EXPANSION RATIO NOZZLE EFFECTIVENESS 

@ ENGINE DERATING WlLL INFI-UENCE SIZING TRADE 

@ AVERAGE MISSION COST WlLL BE SELECTION CRITERIA 

@ NON RETRACTABLE NOZZLES FAVORED FOR M A N  RATING & MISSlON RELIABIL.ITV 

@ PUTS PAYLOAD IN FRONT OF HEAT SHIELD 

TREAT MANNED MISSIONS AS UNIQUE AND INTEGRATE HEAT SHIELD WITH 
MANNED MODULE 
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D .  Florence 
General Elect r ic  

Numerous propulsion subsystem re la ted parameters impact the AOTV 

configuration development and ult imate performance. However, the major 

f i r s t  order parameters appearing t o  have the g rea tes t  impact a r e  engine 

spec-ific impulse, Isp ,  propellant  mixture r a t i o ,  M R ,  and packaging volume 

a n d  length required f o r  the engines and associated plumbing, Figure 1 .  

I t  was demonstrated in Reference 1 t ha t  1 )  improved spec i f i c  impulse (443 

t~ 480 sec )  provides the l a rge s t  benef i t  f o r  both s ing le  s tage  and two 

s t a ~ e  A0TV's9 2 )  f o r  the s ing le  s tage  A O T V ,  the combined e f f ec t s  of a 

srrtalier hydrogen tank due t o  increased mixture r a t i o  and the shor te r  

vehicle due t o  use of multiple small engines, provides a benef i t  nearly 

as large as the increased Isp.  

For ground based AOTV1s, the payload weight delivery o r  round t r i p  capa- 

b i l i z y ,  i s  highly dependent on the AOTV dry weight. Other major parameters 

effectfng the payload magnitude include the engine Isp ,  low ear th  o r b i t  

pay load  capabi l i ty  of the launch vehicle,  and AOTV L/D. For the G E O  del ivery 

mission, the vehicle L / D  has a minor impact on payload del ivery ,  f o r  the 

r o u n d  t r i p  G E O  mission, L / D  i s  more important and f o r  polar del ivery ,  even 

more important, Reference 1 .  A s ing le  s tage  38f t  G E O  del ivery vehicle 

w i t h  propellant tanks sized f o r  a mixture r a t i o  of 7 and a s ing le  engine 

was described in Reference 1 .  Except f o r  the advanced engine ( I sp  = 

477 sec ,  MR = 7 ) ,  t h i s  vehicle u t i  1 i  zed s ta te-of  - the-ar t  techno1 ogy . Si g-  

n i f i c a n t  subsystem weight reductions a re  possible by incorporating advances 

projected due t o  s t a te -o f - the -a r t  advances, Reference 1 .  The improved payload 

delivery of these l i gh t e r  vehicles i s  i l l u s t r a t e d  in Figure 2 ,  and compared 

to  previous AMOOS r e s u l t s ,  Reference 2 .  



Configuration variations of the 38 f t  G E O  delivery vehicle identified 

in Reference 1 ,  were explored for  a Six Hour Polar Mission to determine 

effect  on payload weight/length, Figure 3. Here, i t  i s  noted that incor- 

porating an a f t  conical frustum angle of l o  resul ts  in increased pay load  

length. Lessor frustum angles are expected t o  produce even longer payloads, 

however, the axial center of gravity requirements become less  a t t rac t ive  

and more body f lap (heavier) must be added to trim the vehicle a t  the  desired 

angle of attack. The longer payload lengths are produced by the larger 

propellant mixture rat ios .  Additional payload length i s  obtained by blunting 

the nose, however, the loss of L / D  reduces the payload weight delivery capa- 

b i l i t y .  In th i s  evaluation, the AOTV structure and thermal protection sub- 

system weights were scaled as the vehicle length and surface are changed. 

Hence, we conclude that  for  increased allowable payload lengths in a g r o u n d  

based system, lower L / D  i s  as  important as higher MR in th is  range of  mid  

L / D  AOTV's. 
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Figure 1 .  - Propulsion subsystem parameters with first-order impact on AOTV 
performance. 

Figure  2. - Mid LJD AOTV GEO delivery capability f o r  single-stage vehicles. 



F i g u r e  3. - Performance v a r i a t i o n s  o f  a  s i n g l e - s t a g e  A O T V  f o r  p o l a r  d e l i v e r y .  



Roy W.  Michel 
Aerojet Techsystems Company 

The Aerojet pos i t ion  i s  t h a t  the  r i g h t  approach t o  advanced OTV pro- 
p u l s i o n  i s  with small mult iple engines. I n  con t ras t  t o  the  other  engine 
con t rac to r s ,  Aerojet has se lec ted  a nominal design t h r u s t  of 3000 lbF. 

The small,  mult iple engine approach has several advantages, notably 
t h 3 t  crew sa fe ty  and mission success a re  assured because of engine-out cap- 
a b i l i t y  and t h a t  highest performance in  a given length i s  obtained with 
srn231 engines. Length i s  important both f o r  earth-based OTVs and aero- 
maneuvering OTVs, and higher performance means g rea te r  payload capab i l i ty .  

Of several options f o r  manned O T V  r e l i a b i l i t y ,  only one provides 
the  necessary r e l i a b i l i t y  and i s  p r a c t i c a l :  redundant engines. Other 
options are  f a r  more cos t ly  or  depend on back-up modes t h a t  simply do not 
e x i  st. 

The 3000 lbF t h r u s t  engine develops about 4 I b F  sec/lbM higher per- 
f o ~ m a ~ c e  than the  15,000 1bF engines within a given length,  by v i r t u e  of 
higher area r a t i o .  For the  l a rge r  engine t o  achieve the  same performance 
reqwircls an addit ional  th ree  t o  four f e e t  of length and two or  th ree  exten- 
dable nozzle segments. I n  an aeromaneuvering vehicle these  extendable seg- 
melots must a l so  r e t r a c t  during passage through the  atmosphere and thus con- 
s t i  t u t e  s ing le  point f a i  l ure modes. 

With mult iple 3000 1 b F  t h r u s t  engines the  whole mission model can 
be performed, e f f i c i e n t l y ,  by a s ing le  propulsion system. Large space 
st , -uctures (LSS) a re  accelera t ion- l imi ted  and have a t h r u s t  requirement of 
503 t o  2500 lbF, which i s  met by one or  two engines t h r o t t l e d .  Many pay- 
loads a re  in the  3000 IbM c l a s s ,  which a lso  requi res  one or two engines. 
H i g h  energy payloads and manned aeromaneuvering vehicles requi re  10,000 t o  
12,000 I b F  t h r u s t ,  obtained by a four engine configurat ion.  

Xero je t ' s  approach t o  space-based maintenance i s  t o  design the  
en;ine t o  be a space-replaceable u n i t ,  which i s  most p laus ib le  f o r  small 
engines. If  an engine component needs r e p a i r ,  the  whole engine would be 
removed and returned t o  ea r th ;  r e p a i r s  would be made by s k i l l e d  tech- 
n i c i a n s  and the  engine re t e s t ed  t o  assure i t s  operation and performance. 

The several advantages of the  small ,  mult iple engine approach t o  
OTV propulsion have a l i f e  cycle cos t  benef i t  on the  order  of $1 Bi l l ion .  
Altogether, the  advantages and potent ia l  cos t  savings prove t h a t  the  r i g h t  
approach t o  advanced OTV propulsion i s  with small ,  m u 1  t i p l e  engines. 



ADVANTAGES OF 
SMALL, MULT PLE ENG 

@ CREW SAFETY AND MISSION SUCCESS 
ASSURED 

@ HIGHEST PERFORMANCE FOR GIVEN 
LENGTH 

@ MORE PAYLOAD CAPABILITY 

@ GREATER MlSSlON FLEXIBILITY 

@ REAL SPACE-BASED MAINTENANCE 

@ SAVES $1 BlLLlON 

Figure  1 

ONS FOR 
OTV REL 

RELIABILITY 
REQUIREMENT D LIFE BOAT 

\ R = .999 E RESCUE VEWlCLE 

Figure 2 



GHEST PERFORMANCE FOR 

490 r 
GIVEN LENGTH 

PC F E Isp 

2000 3K 1200 484.1 

ROCKETDVNE 2000 15K 1300 483.8 

ENGINE LENGTH, IN. 

F i g u r e  3 

GREATER 

PAYLOAD THRUST, ibF # ENGINES 

LSS 500-2500 1 O R 2  
(THROTTLED) 

MANNED 9,500 4 
(AEROMANEUVERsNG) 



SMALL ENG NE MEANS REAL 
SPACE-BASED MA NTENANCE 

Figure 5 

SMALL ENG NE APPROACH 
SAVES $1 B 

VALUE 

@ WEIGHT -40 M 

@ PERFORMANCE 400 M 
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J.  R .  Brown 
P r a t t  & Whi tney  A i r c r a f t  

Prat t  & Whi tney  A i r c r a f t  b e l i e v e s  t h a t  s e v e r a l  s i g n i f i c a n t  i s s u e s  e x i s t  
i n  the e n g i n e / v e h i c l e  i n t e g r a t i o n  a rea .  These i s s u e s  f a l l  i n t o  t h e  g e n e r a l  
c a t e g o r i e s  o f  : 

o s c e n a r i o  v a l i d i t y  
o geomet ry  c o n s t r a i n t s  
o t h r o t t l e  l e v e l s  
s r e 1  i a b i  1 i t y  
o s e r v i c i n g  

We b e l i e v e  t h a t  one eng ine  canno t  be o p t i m i z e d  t o  c o v e r  a l l  p o s s i b l e  
per."turb;stions o f  t h e s e  i s s u e s .  Ra the r ,  t h e  i s s u e s  must  be r e s o l v e d  i n  a 
c o o r d i n a t e d  e f f o r t  between t h e  e n g i n e  and systems c o n t r a c t o r  and o n l y  t h e n  can 
t h e  eng ine  c o n f i g u r a t i o n  be s e l e c t e d .  

IS CURRENT SCENARIO VALID? 

Space based 8 T V  

Prope11ant depot 

rganned GEO missions 

Serbstantial LEO-GEO traffic 

E.ow thrust deployment missions 

Only one type OTV 

blew driver mission (e.g., lunar lander) 

F i g u r e  1 
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WHAT ARE ENGlNE 
GEOMETRY CONSTRAINTS? 

Available length 

@ Available diameter 

Vehicle total thrust required 

Number of engines 

F i g u r e  2 

WHAT THROTTLE LEVELS ARE REQUIRE[)? 

Steps I%, 10%, 100% 

Continuous I%, 3% to 100% 

Mixed 1%, 3% to 10%, 100% 

What response rate are required? 



'WHAT ARE ENGINE REQUIREMENTS 
DURING AEROASSIST MANEUVER? 

-- 

a) Nonfiring 

Firing 

Thrust level , response 

Extendable nozzle position 

a Engine environment 

'Thermal 

Flow field 

F i g u r e  4 

6110\SJ DOES ENGINE INFLUENCE 
VEHICLE RELIABILTY? 

a Number of engines 

Mission %ogic (number of failures to abort) 

Barzk-up dependency 

bkiain engine 

Rescue mission 

Figure  5 



WHAT ARE VEHICLE SERVICING 
REQUIREMENTS/CAPABILBTIES? 

Routine maintenance (after every mission) 

Periodic maintenance (after every 10 missions) 

Unscheduled maintenance 

Back-up mission logic 

One spare vehicle 

One spare + components 

Two spare vehicles 

Etc. 

Dependency on diagnostic systems 

The engine contractors need to know: 

1. How does vehicle limit engine geometry? 

2. What is engine required to do? 

Primary mode 

Aeroassist mode 

3. What propulsion system reliability is needed? 

4. What engine servicing capability is available? 

F i g u r e  7 
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ORBITAL TRANSFER VEHICLE PROPULSZOE ISSUES 

VEHICLE/ENGINE INTEGRATION 

R. P. Bergeron and V.  A.  Weldon 
Rockwell I n t e r n a t i o n a l  Corpora t ion  

"11~ development of a  r e u s a b l e  and space-basable  o r b i t a l  t r a n s f e r  v e h i c l e  (OTV) 
n e c e s s i k a ~ e s  an i n t e g r a l  approach toward s t r u c t u r a l  and p r o p u l s i o n  subsystems 
design, Key d r i v e r s  i n c l u d e  g i m b a l / a c t u a t o r  l o c a t i o n ,  f eed  l i n e  gimbal p r o v i s i o n s ,  
and a c c e s s a b i l i t y  f o r  o r b i t a l  maintenance.  Recent s t u d i e s  have cons idered  t h e  u s e  
oi t o r o i 2 a i  tank c o n f i g u r a t i o n s  w i t h  t h e  e n g i n e ( s )  l o c a t e d  w i t h i n  t h e  c e n t r a l  
c d v i t y  of the t o r o i d .  The pr imary o b j e c t i v e  of t h a t  approach i s  t o  a c h i e v e  
r m i n u r n  s t a g e  l e n g t h .  Dependent upon eng ine  s i z e  and number, t h a t  concept  i n t r o d u c e s  
I4nLque v e h i c i e l e n g i n e  i n t e g r a t i o n  requ i rements  t h a t  n e c e s s i t a t e  s p e c i a l  d e s i g n  
c o c s d e r a t i o i ~ s .  Of p a r t i c u l a r  concern  i s  v e h i c l e  c e n t e r - o f - g r a v i t y  (CG) l o c a t i o n  
x l e n  t h e  p r o p e l l a n t  t anks  a r e  more t h a n  75% expended. A s i n g l e  eng ine  i n s t a l l a t i o n  
w L L 1  n e c r s s i ~ ~ a t e  moving t h e  eng ine  f u r t h e r  a f t  and /or  r e l o c a t i o n  o f  t h e  eng ine  
g ~ , n % a l  1 : ~ i n t  to accommodate v e h i c l e  c o n t r o l  r equ i rements .  P e n a l t i e s  a s s o c i a t e d  
w ~ t h  gl-mbal p o i n t  r e l o c a t i o n  w i t h o u t  i n c r e a s i n g  s t a g e  l e n g t h  o r  modifying t y p i c a l  
a2vanced engine concep t s ,  a s  w e l l  a s  a  method f o r  minimizing such p e n a l t i e s ,  a r e  
? resen ted  f o r  a s i n g l e  eng ine  t o r o i d a l  t ank  OTV c o n f i g u r a t i o n .  A l t e r n a t i v e  
: ? legra ted  v e h i c l e  s t r u e t u r e l e n g i n e  concep t s  a r e  a l s o  p r e s e n t e d  f o r  mul t i -engine 
c ~ n f i g t r r a t i o r a s .  F e a t u r e s  of t h e s e  p o t e n t i a l  concep t s  e r e  p r e s e n t e d  which i n d i c a t e  
Chc ricer Tor s u b s t a n t i a l  a d d i t i o n a l  s t u d y  of f e e d l i n e  gimbal a l t e r n a t i v e s  b e f o r e  
TlrmLy e s t a b l i s h i n g  advanced eng ine  d e s i g n .  

s i ?  3f v e h i c l e / e n g i n e  i n t e g r a t i o n  i s  addressed  i n  t h r e e  a r e a s ;  i n t e r f a c e s  
cal enii f u n c t i o n a l ) ,  i n s t a l l a t i o n  requ i rements ,  and r e l i a b i l i t y  appor t icnment  

number of eng ines  r e q u i r e d  t o  a s s u r e  m i s s i o n  comple t ion) .  Typ ica l  e lements  
ai each a r e a  a r e  p r e s e n t e d  below, 

8 LNTEIiFACES 
-'TF-!RUST STRUCTURE GIMBAL ATTACH 
-PRESSURANTS 
-rlCTIJATOR( S  ) 
-2 ULP INLET ( s ) 
--13URGE REQUIREMENTS 
-SLECXRICAL/AVIONICS 

INSTALLATION 
-ACCESSABILITY 
--S"U'T'I?FNESS 
-INLET CONTOUR CONTROL (UPSTREAM) 
-GIM3AL/ACTUATOR LOCATION 
--FEED LINE(S) GIMBAL PROVISIONS 



-EXTENDABLE NOZZLE COMPATIBILITY 
-AERO-ASSIST KIT COMPATIBILITY 

8 RELIABILITY APPORTIONMENT 
-FAILURE MODES(S) 
-ENGINE-OUT CAPABILITY 

The n e c e s s a r y  v e h i c l e l e n g i n e  i n t e r f a c e s  a r e  d e f i n e d  by o v e r a l l  m i s s i o n ,  sys tem,  and 
performance requ i rements .  Although some i n t e r f a c e  requ i rements  a r e  s u t ~ j e c t  t o  
t r a d e  s t u d y  a n a l y s e s  ( i . e . ,  autogenous v s  he l ium p r e s s u r i z a t i o n ,  t h r u s t  v e c t o r  
c o n t r o l  (TVC) v s  Reac t ion  Cont ro l  System (RCS), once t h e  i n t e r f a c e s  a r e  d e f i n e d ,  
t h e i r  c h a r a c t e r i s t i c s  a r e  e s t a b l i s h e d  and i t  remains f o r  t h e  d e s i g n e r  t o  p rov ide  
an i n s t a l l a t i o n  t h a t  w i l l  s a t i s f y  o t h e r  program o b j e c t i v e s  ( i . e . ,  simplicity, 
a c c e s s a b i l i t y ,  c o s t ,  e t c . ) .  An e f f i c i e n t  o v e r a l l  c o n f i g u r a t i o n  can  be achieved i f  
o n l y  an  i n t e g r a t e d  approach toward v e h i c l e  s t r u c t u r e l e n g i n e  d e s i g n  i s  implezen ted .  
The o b j e c t i v e  of t h i s  paper  i s  t o  p rov ide  an  example of t h e  s i g n i f i c a n t  need f o r  
such an i n t e g r a t e d  d e s i g n  approach.  To accomplish t h i s ,  t y p i c a l  OTV c o n c e p t s ,  
which have been sugges ted  i n  p r i o r  s t u d i e s ,  a r e  used t o  i l l u s t r a t e  t h e  p o t e n t i a l  
problem a r e a s  t h a t  must be addressed  p r i o r  t o  advanced eng ine  d e f i n i t i o n .  

DISCUSSION 

A t y p i c a l  OTV concept  which h a s  r e c e i v e d  c o n s i d e r a b l e  a t t e n t i o n  i n  r e c e n t  y e a r s  
u t i l i z e s  a  c o n v e n t i o n a l  p r o p e l l a n t  s t o r a g e  t ank  f o r  LH , but  an  advanced t o r o i d a l  
t a n k  d e s i g n  f o r  LOp s t o r a g e .  A s i n g l e  eng ine  is  i n s t a f l e d  i n  t h e  c a v i t y  of t h e  
t o r o i d a l  t a n k  i n  o r d e r  t o  minimize s t a g e  l e n g t h  and Space T r a n s p o r t a t i o n  System 
(STS) launch c o s t s  and /or  maximize payload l e n g t h .  When o p e r a t i n g  i n  an  expendaSPe 
mode, w i t h  payload a t t a c h e d  forward,  t h i s  concept  i s  v i a b l e .  However, when 
o p e r a t i n g  i n  a  r e u s a b l e  mode wi th  s t a g e  r e t u r n  a f t e r  payload deployment,  t h e  
v e h i c l e  C .  G.  moves a f t  o f  t h e  eng ine  gimbal p o i n t  (assuming a  c o n v e n t i o n a l  eng ine  
d e s i g n  w i t h  f r o n t  end g imbal ) .  A p o t e n t i a l  s o l u t i o n  i s  t o  move t h e  eng ine  f u r t h e r  
a f t ,  h u t  t h i s  d e f e a t s  t h e  o r i g i n a l  o b j e c t i v e  of s h o r t e s t  s t a g e  l e n g t h .  An 
a l t e r n a t e  method, F igure  1 ( u s i n g  a  Rocketdyne e a r l y  RS-44 eng ine  v e r s i o n  a s  an 
example),  i s  t o  add a  t h r o a t  gimbal k i t  which p rov ides  a  "pseudo" gimbal a x i s  
about  t h e  eng ine  t h r o a t .  I n  t h i s  c o n f i g u r a t i o n  t h e  t h r u s t  l o a d s  a r e  s t i l l  
t r a n s m i t t e d  through t h e  power head and t h r u s t  s t r u c t u r e  i n t o  a  b e a r i n g  p l a t e  on t h e  
v e h i c l e .  Some r e d e s i g n  o f  t h e  eng ine  t o  a t t a c h  t h e  t h r o a t  gimbal l i n k s  i s  of 
course  r e q u i r e d .  Another a l t e r n a t i v e  i s  t o  r e d e s i g n  t h e  eng ine  f o r  i n t e g r a l  
t h r o a t  gimbal and t h r u s t  l o a d  t r a n s f e r  ( i . e . ,  s i m i l a r  t o  t h e  Apollo S e r v i c e  Module 
Engine) .  Th i s  change would a l s o  n e c e s s i t a t e  r e l o c a t i o n  of t h e  feed  l i n e  i n t e r f a c e  
t o  t h e  t h r o a t  gimbal r i n g .  A comparison o f  t h e  sugges ted  eng ine  m o d i f i c a t i o n s  
a r e  p r e s e n t e d  below. 



PEDES TGN FOR THROAT GIMBAL REDESIGN FGR THROAT 
G THRUST LOAD TRANSFER GIMBAL WITHOUT 

--- THRUST LOAD TRANSFER 

@ Cl3NVEFIXlONAL GIMBAL STRUCTURE O COMPLEX GIMBAL STRUCTURE 
M A J O R  ENGINE REDESIGN @ MODERATE ENGINE REDESIGN 

@ KINOR WEIGHT IMPACT f4 MAJOR WEIGHT IMPACT 
Q FSED L I N E  SYSTEM-MINOR INCREASE @ FEED L I N E  SYSTEM-COMPLEX 
IT \ B I G H T  G COMPLEXITY & HEAVY WITH INCREASED 

@ L X I T E : D  POWER HEAD ACCESSABILITY HEAT LEAK 
@ EXTENDABLE NOZZLE IMPACT @ L I M I T E D  POWER HEAD 

ACCESSABILITY 
@ EXTENDABLE NOZZLE IMPACT 

7, 

LO resa lve  such i s s u e s ,  f u r t h e r  s t u d y  of g imba l / feed  l i n e  a l t e r n a t i v e s  a r e  
r z : ~ ~ [ ~ n i . ~ ~ d ~ d  p r i o r  t o  e s t a b l i s h i n g  advanced eng ine  c o n f i g u r a t i o n  requ i rements .  

"h-, reusable and space-basable  OTV i s  planned t o  evo lve  i n t o  a  man-rated system. 
In ori5sr to ach ieve  t h i s  o b j e c t i v e ,  t h e  i s s u e  of eng ine  r e l i a b i l i t y  and redundancy 
r c q ~ i r e a l c n t s  must be addressed .  The s i n g l e  engine r e l i a b i l i t y  w i l l  d i c t a t e  t h e  
number o f  eng ines  r e q u i r e d  t o  s a t i s f y  o v e r a l l  m i s s i o n  p r o b a b i l i t y  o f  s u c c e s s ,  
F ; ~ i ~ r e  2 .  Zn o r d e r  t o  meet manned m i s s i o n  r e q u i r e m e n t s ,  t h e  r e l i a b i l i t y  
sppork;oi:r-ient f o r  t h e  p r o p u l s i o n  system i s  i n  t h e  o r d e r  of 0 .999 .  A s  i n d i c a t e d  
,n %g..tre 2 ,  a two engine c o n f i g u r a t i o n  (wi th  on  eng ine  capab le  o f  accomplishing 

he nission) i s  e q u i v a l e n t  t o  a t h r e e  eng ine  c o n f i g u r a t i o n  ( w i t h  one eng ine  capab le  
o f  ~ c c n m p l i s h i n g  t h e  m i s s i o n )  and s u p e r i o r  t o  a  t h r e e  eng ine  c o n f i g u r a t i o n  ( w i t h  
tvirc eng ines  r e q u i r e d  t o  accomplish t h e  m i s s i o n ) .  A two eng ine  OTV concept  was 
herefore s e l e c t e d  t o  e v a l u a t e  v e h i c l e / e n g i n e  i n t e g r a t i o n  i s s u e s ,  

Gt:cn u s i n g  m u l t i p l e  eng ines  o f  RS-44 s i z e ,  t h e  e n g i n e s  can no longer  be i n s t a l l e d  
~ ~ - 1 ~ r n  :hc t c r o i d a l  t a n k  c a v i t y ,  F i g u r e  3 .  I n  t h i s  c o n f i g u r a t i o n  a  key i n t e g r a t i o n  
i s s u e  _ s  p r o p e l l a n t  f eed  l i n e  gimbal r e q u i r e m e n t s ,  I n  o r d e r  t o  i n t e g r a t e  t h e  
c ~ r r e n r i y  suggested RS-44 eng ine  i n t o  a  v e h i c l e ,  feed l i n e  gimbal must be 
a c c n c ~ p ; ~ s b e i I  upst ream of t h e  pump i n l e t s  l o c a t e d  on t h e  power head.  T h i s  would 
- -. r 7 t  ill complex l i n e  r o u t i n g s  w i t h i n  t h e  t o r o i d a l  c a v i t y  t h u s  p r o v i d i n g  l i m i t e d  
-cccis Cor assembly and/or  on-orb i t  maintenance.  I n  a d d i t i o n ,  t h e  g r e a t e r  
d r t l c u  a:ion o f  r e l a t i v e l y  long  l i n e  l e n g t h s  ( e s p e c i a l l y  i n  a n  engine-out c o n d i t i o n )  
, ~ ~ - t i a  - - robably  l i m i t  t o  two t h e  number o f  eng ines  t h a t  could  be i n s t a l l e d  wi thou t  

" 
slgnrr~cart i n c r e a s e  i n  s t a g e  l e n g t h .  A p r e f e r r e d  concept  may be t h a t  which h a s  
beeL orp'loy1.d on t h e  S T S  o r b i t e r  f o r  t h e  SSME; f eed  l i n e  gimbal downstream of t h e  
3 i 1 c  This  i n s t a l l a t i o n  could  be l i g h t e r  and s i m p l e r ,  and p rov ide  b e t t e r  

a c c e s s  f o r  sssembly and on-orb i t  check o u t  and maintenance.  Using t h i s  approach,  
the feel1 i i ~ e  gimbal sys tem would be inc luded  i n  t h e  advanced eng ine  d e s i g n .  T h i s  
: r ) n ~ t c p t  could a l s o  be b e n e f i c i a l  i n  t h a t  changes i n  p r o p e l l a n t  f low c h a r a c t e r i s t i c s  
r u L t i  reen l i n e  con tour  changes d u r i n g  gimbal can be e v a l u a t e d  d u r i n g  eng ine  
a n a ! j s c s ,  d e s i g n  and t e s t i n g .  P r o p e l l a n t  f eed  l i n e  gimbal f o r  c o n v e n t i o n a l  t ank  
d a s i i ; n  roiict?pts,  F igure  4 ,  have a l s o  been e v a l u a t e d  and s i m i l a r  r e s u l t s  o b t a i n e d .  
A g z i n ,  this i s  mainly due t o  t h e  l o n g e r  l i n e  l e n g t h s  r e q u i r e d  and g r e a t e r  f eed  
!icie a r t i c u l a t i o n  needed t o  s a t i s f y  t h e  engine-out c o n d i t i o n .  



CONCLUDING REMARKS 

The o b j e c t i v e  of t h i s  paper  i s  n o t  t o  recommend t h e  p o t e n t i a l  changes in advanced 
eng ine  d e s i g n  d i s c u s s e d  above,  b u t  r a t h e r  t o  emphasize t h e  need f o r  an  i n t e g r a t e d  
approach toward v e h i c l e / e n g i n e  d e s i g n .  Th is  i n t e g r a t e d  approach becomes even 
more n e c e s s a r y  when a e r o - a s s i s t  concep t s  a r e  c o n s i d e r e d ,  e s p e c i a l l y  f o r  those  
concep t s  t h a t  r e l y  on eng ine  f i r i n g  d u r i n g  a e r o - a s s i s t  maneuver. 

An on-orb i t  checkout and maintenance phi losophy must a l s o  be e s t a b l i s h e d  t o  
p rov ide  e f f e c t i v e  g u i d e l i n e s  f o r  eng ine  d e s i g n  and se l f -moni to r  requ i rements .  
With t h e  e x c e p t i o n  of o i l s  and g r e a s e s ,  t h e  a v i a t i o n  i n d u s t r y  t r e n d  i s  toward no 
scheduled maintenance between major o v e r h a u l s .  A s i m i l a r  o b j e c t i v e  might be 
cons idered  f o r  t h e  r e u s a b l e ,  space-basable  OTV. 

Engine redundancy, t h r u s t  l e v e l ,  t h r o t t l i n g ,  e t c .  r equ i rements  r e c a i r i  as open 
i s s u e s .  I f  p r o p e r l y  executed by t h e  s e l e c t e d  c o n t r a c t o r s ,  t h e  c u r r e n t l y  planned 
NASA MSFC OTV Concepts D e f i n i t i o n  and Systems A n a l y s i s  Study should p rov ide  answers 
t o  t h e s e  and most o t h e r  v e h i c l e / e n g i n e  i n t e g r a t i o n  i s s u e s .  I n  t h e  i n t e r i m ,  i t  
appears  p ruden t  t o  m a i n t a i n  a s  much f l e x i b i l i t y  a s  p o s s i b l e  i n  d e f i n i n g  an 
advanced c ryogen ic  eng ine  c o n f i g u r a t i o n .  



F i g u ~ r e  1. S i n g l e  Engine I n s t a l l a t i o n  f o r  T o r o i d a l  Tank Conf igura t  

* 2/11 & 3 / 2  OPTIONS 
APPROXIMATELY 
EQUAL WElGHT FOR 
S A M E  T / W  

@ 281 OPTION OFFERS 
REDUCED COSTS & 
LOWER SINGLE ENGINE 
RELliABlLlBY 

KEY: 211 = TWO ENGlNESl 
ONE REQUIRED 

SINGLE ENGlNE RELIABILITY 

Figure  2 .  Engine Redundancy Requirements 

i o n  



Figure 3. Multiple Engine Installation Options for Toroidal Tank Stage Cone 
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SPACE BASED OTV SERVICING* 

J. Greg McAllister and Larry Redd 
Martin Marietta Aerospace 

Space based servicing of an Orbit Transfer Vehicle (OTV) has been outlined 
in sufficient detail to arrive at OTV and support system servicing requirements. 
Needed space station facilities and their functional requirements have been 
identified. The impact of logistics and space servicable design on the OTV design 
is detailed. 

INTRODUCTION 

The President's proposed Space Station (SS) will provide an excellent base 
from which to operate a reusable space based Orbit Transfer Vehicle (OTV). 
Using the SS as a launch and refueling platform will allow the decoupling of the 
Space Transportation System (sTS) earth to low earth orbit (LEO) and the OTV LEO to 
geosynchronous earth orbit (GEO) legs of payload delivery to GEO. The shuttle will 
no longer be forced to launch in a window dictated by the payload delivery, but 
rather on a periodic basis which would allow optimization of ground resources for 
routine flow. The burden of meeting the launch window then falls upon the SS/OTV 
system. This implies the need for a highly dependable OTV and OTV support system 
if the launch windows are to be reliably met. 

The OTV support system will in part consist of SS facilities capable of 
doing routine maintenance and certain contingency repair procedures. It will need 
an efficient logistics function, as well, to provide needed spares and consumables 
in a cost effective, timely manner. Implied by this is a highly developed health 
monitoring system for the OTV and its subsystems. This system must be capable of 
diagnosing items in need of attention early enough so that the necessary 
preventative action can be scheduled and lengthy downtimes avoided. All this is 
made very challenging by the fact that the SS will be able to provide only very 
limited manned support due to the restricted number of men available, the extreme 
difficulty of working in the space environment, and the demands of other SS 
activities. 

GROUND RULES AND ASSUMPTIONS 

Since none of the hardware actually exists, it is necessary to make a few 
assumptions and establish sensible ground rules to allow the task to proceed. 
These are shown in Table 1 and will be briefly discussed below. Since the 
objective of the present study is to identify engine impacts with regard to 
servicing, detailed design of the SS support facilities, etc., won't be attempted. 
Also, assumptions which ease the task of determining representative OTV design and 
subsequent engine impacts will be made fully realizing that they may not be real. 

* This work was performed under Contract No. 127985 with Pratt and Whitney 
Aircraft, West Palm Beach, Florida 
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For instance, all refueling operations are assumed to be performed on the SS 
instead of at a remote propellant farm. Operationally, the only impact is to the 
timeline. The operations to be performed remain similar. The major assumptions 
show up in Table 1 while many of the smaller assumptions will be noted in the text, 
as appropriate . 

The present study ground rules are: the use of the space station as the OTV 
base, STS shuttle as the launch vehicle, manrating of the OTV, L 0 2 / ~ ~ 2  
propellants, and the use of an aerobrake with a low lift to drag ratio. From a 
servicing standpoint, L02/LH2 propellants, manrating, and the aerobrake present 
the greatest drivers. While the aerobrake itself may not need much servicing, a 
fixed aerobrake restricts OTV maneuvering about the SS, drives hangar design, and 
complicates engine servicing. Manrating implies a high degree of 
reliability/redundancy which in turn impacts the integrity of servicing 
operat ions. L O ~ / L H ~  propellants have a major impact on the propellant storage 
and transfer systems and to a lesser extent impacts the engine servicing 
requirements. Principally, the latter will be concerned only with engine changeout 
implications and the required health monitoring system and its requirements. 

As mentioned above, all space based OTV servicing is assumed to be at the SS 
and means to maneuver the OTV about the SS are provided. Specifically, 
the hangar and refueling depot are assumed attached and controlled from a permanent 
OTV control station at the SS. The OTV control station will control all OTV 
related operations: data-handling, refueling, line of sight (LOS) proximity 
operations, maintenance scheduling and procedures (except extra-vehicular activity 
(EVA)), and SS inventory control. The OTV is assumed to be under ground control 
for the LEO-GEO-LEO phase of the delivery missions. Both the baseline Rev 6 
mission model and the SS Mission Model (ref. 1 Vol. 3) indicate an OTV launch 
frequency of one every two weeks to one month. Therefore, a two week turnaround 
will be used as the groundrule. 

OTV MISSION FLOW 

Given the above assumptions and ground rules, the general OTV servicing flow 
can be sketched as shown in Table 2. From this list of operations, those pertinant 
to engine and OTV servicing are further broken out so that an operational and 
functional analysis can be performed which will reveal the SS facilities needs and 
the engine servicing impacts. These will be used as a baseline against which 
alternate servicing concepts will be explored/evaluated. 
Also, contingency operations such as unscheduled maintenance will be discussed 
relative to the impact on the baseline functional flow. 

A "top down" approach was first used to divide up the nominal two week 
turnaround so that the maximum available time to do tasks could be delineated. 
Next, specific individual tasks were considered "bottom up1' in that actual times 
and equipment needed to perform comparable tasks on the ground were determined. In 
this fashion, areas of further research were identified. For the purposes of this 
study, the shorter of the two times were used to assemble the timelines shown. 
Included with the operational analysis are columns indicating facilities needs, and 
intra-vehicular activity (IVA), EVA and delta time. 



Tables 3 and 4 indicate tasks, facilities, and time data for the baseline 
OTV turnaround. Table 2 presents a top level OTV servicing flow while Tables  3 and 
4 break out OTV servicing and engine servicing in further detail, respectiveby, 
Complete mission turnaround is shown to take approximately 10 days. This is driven 
primarily by the LEO-GEO-LEO time and the OTV post mission processing. 

The following discussion will cover the OTV mission flow. The '\genericaQ i3TV 
mission is anticipated to begin early with the mission planning activities and 
other operations by the payload program. The SS begins its preparations 2 co 3 
days before the payload is delivered by the STS. The payload is delivered a 
nominal one week early principally at the convenience of the shuttle and i s  stored 
on-board the SS awaiting pre-mission processing. Facilities for handling the 
payload are presumed available. Their exact manifestation is immaterial, b i ~ t  
should include means of mechanically restraining the payload, providing dorlnant: 
power, data handling, and thermal protection. 

A day before the mission the payload is moved into the servicing hangar for 
final check-out operations. No EVA is anticipated, but could be used if t h e  
payload had non-standard interfaces or required some minor contingency repair, 
For normal operations all pre-mission payload check-out operations shall be handled 
remotely. The four hours of check-out time are primarily to allow for P/L 
operations which may be more economically performed on the SS than on the %round, 
For example, payloads could be launched without fluids to relieve designing for 
launch loads. 

Following successful payload check-out, the OTV will be moved to the 
servicing hangar for mating with the payload. A final health check will be made o f  
the OTV and the mission parameters will be loaded into the OTV main computer, The 
OTV to payload interface (I/F) is assumed to be primarily mechanical with a minimal 
electrical I/F provided. The electrical I/F would be standardized as well. as she 
mechanical I/F. If non-standard I/F'S were used, the timeline would need to he 
modified to allow for OTV I/F modification, No fluid I/F% are anticipated, Two 
P/L interfaces are implied here: one for the OTV and one for the STS. Once m a t e d  
and the I/F% verified, the OTV and payload will be moved to the OTV refueling area, 

Refueling is performed as the last major operation in the pre-liiunch flow to 
avoid bringing a fully loaded OTV into the hangar and to minimize boil--off, This 
implies a refueling area capable of accommodating the OTV, aerobrake, sind p a y l o a d ,  
The OTV is docked and refueled on the aft end. A fixed aerobrake will complicate 
the refueling area design. Presumably, a door will be provided in the aerobrake to 
allow the fluid umbilicals access to the OTV fluid interfaces. The refuehiqg 
operation itself is the subject of much debate and is simplified here i n t o  a t a ? k  
chilldown operation followed by the bulk fluid transfer. Simultaneous fluid 
transfer is assumed. Non-hypergolic fluids and "no leak" quick-disconreects (QD") 
should allow this. Also, reaction control system (RCS) propellants and pressurants 
are resupplied in parallel with the main propellants. Pressurant needs should be 
minimized as much as possible due to the inordinate costs of resuppling pressurancs, 

Following resupply, a final OTV checkout can be performed (gimbal a r t u a t c r s ,  
pressure checks, etc). The OTV and payload are then disconnected from the 
refueling area and deployed from the SS. The timeline shown assumes that the SS 
remote manipulator system (RMS) releases the OTV and payload combination w i t h  a 
small delta-V relative to the SS. The OTV uses a "smalla' RCS burn to give 



~ P d l t i o r ~ a P  delta-V (about 3 fps) allowing swifter OTV and SS separation, At a safe 
:estaae. from the SS the OTV control is passed to the ground and the delivery 
aission begins, An orbital maneuvering vehicle (OW) could be used to accomplish 
- ~c same t h ~ n g .  

Space Station control resumes following the return of the OTV to a safe area 
i * _ c k i n  tOS OF; the SS, Here, OTV safing is performed. This may be comprised of 
venting the OTV propellant residuals. However, this timeline assumes that the cost 
s f  propellarsts is of sufficient importance to warrant recovery. Safing would then 
o - s t a i ~ ~  prir~arily, deactivation of the main engines (and the RCS if an OMV is used 
tc recover the OTV), The OTV is returned to the SS following safing either by the 
C 7 V  XGS or an OMV. The OTV is berthed at the refueling area. 

I f  ssfing were to entail venting of propellants, this may have a major 
l ,,,pats. ,-, on the OTV, Non propulsive vents must be provided with the appropriate 

tv.Tx~ing a n a  controls. Venting through the engines would be possible but could 
;-pose bndesirable characteristics on the engine. Additionally, the resulting 
_s-,sr would need to be accounted for. An OMV would not be able to do this as the 
3% wocl!.d lrkely be mated to the aft end of the OTV (so its thrust can act through 
r l-e CTV-p/L center of mass). 

Post mission processing is essentially the reverse of the pre-mission flow, 
T-;e r e s ~ d ~ a .  propellants are removed after docking at the refueling area, Liquid 
pfo9eiia~~ts are returned to the SS cryogen tanks and gaseous propellants are 
F 3 r  ,,4~;-.xcd f9-z use by the SS. RCS propellants would also be returned to storage to 
, 1 3  I r >  the accuracy of pre-mission loading (mass measurement errors would otherwise 
3~co~,lace), It may be desirable to leave a blanket pressure of propellant gases 

1 ; ha  ranks for structural reasons. 

  iring the propellant off-loading the SS data handling system will down link 
i a t c l  from the OTV and return the bulk of this data to the ground where it 

> E  processed, Additional data will have already been sent to the ground 
i-le ~~ission. Some data will also be retained by the SS computer to allow SS 

~ ~ r a ~ l : n e 2  to begin post processing scheduling. Quick data analysis and turnaround 
, I L L  39 essential to efficient OTV servicing, The bulk of the analysis software is 

,slrrred ito I-eside on the ground because it isnk cost effective to burden the SS 
9 t T r L t e -  3r personnel with this task. Two days are allowed for the ground to 

- - I  - -  cs the SS a preliminary post mission maintenance schedule. During chese t h o  

- ags ,  c\e 3'CV would be returned to the hangar if it still has a payload attrched, 
9 - r e r w i s e ,  the OTV is moved to its storage area (which may be the servicing hangar 
- $nose oc this later). 

S l n e e  post mission OTV servicing is highly dependent upon which maintenance 
- ~ d ? a s  t3 5e performed, the routine servicing flow will be discussed along w i t h  a 
>.parate discussion of major contingency operations such as engine removal or 
,:-rhsbralcz repair, Crew time is expected to be an extremely valuable com.odity, 
~ ? a r z f o r e ,  routine operations will be highly automated. In addition, the ground 
1--3:e2sirag of mission data will perform an optimization of servicing tasks and 

e : u r n  a tirile table detailing the exact operations to be performed, An 
~ - , c - ~ ~ r i a a t i , ~ n  is only possible now because both routine, (every missionb and 
.. ~ ~ t ? : : g e n c y  operations will be interwoven to effect the optimization. This 
? > ~ r o x r - a z L i o n  appears in Table 2 made up of the scheduled maintenance tasks from 
" d S ~ ? s  and 4 .  



While the OTV is still berthed at the refueling area, a propulsion system 
check will be performed. This check will be in support of ground analysis of 
flight data to determine items in need of maintenance and to execute tests design2d 
to isolate any anomalies detected in the flight data, The objective of this 
checkout is to drive out any failures which can be remedied in the BTV maintenance 
to follow. Also, tests which require pressurants will need to be perforra~ed here- 
If the OTV was equipped with removable tanks, the tank operations would be 
performed in this area. However, removable tanks are not currently envisianod, 

All maintenance operations will be performed in the servicing hangar after 
the schedule has been returned. The first operation will be an overall. LITd visual 
inspection. This could be done EVA, but will likely be done with a closed circuit 
TV (CCTV) and monitor. In this case, sufficient mobility must be given to the CCTV 
to allow it to reach all areas of the OTV. Most likely, only specific areas will 
routinely be inspected such as the engine nozzles, aerobrake, and OTV e c e e r i o r -  
CCTV movement could then proceed in a pre- programmed manner and the crew woubd 
only override to inspect questionable areas. 

It is anticipated that the servicing hangar will provide for checko~e 
umbilicals more extensive than those provided at the refueling area so thar. 
specific tests can be run on the avionics. All umbilical actuation will be 
automated to avoid EVA costs. EVA is anticipated only for non-routine 1nod1~3e 
change out operations, non-routine inspection, and other infrequently performed 
operations where it won't be cost effective to automate. In any case, after 
checkout umbilicals are attached the avionics will be checked via checkout s o f t ~ a r e  
and equipment carried for this purpose. Any anomalies will be noted and f a c t o r e d  
into the maintenance schedule relayed from the ground. Any EVA operations would be 
performed following schedule finalization. EVA module changeout would be performed 
on all items so identified in the preceding checks. This assumes that the propier 
modules are already on board the SS and the modules were designed for EVA 
replacement. Both of these assumptions will be discussed more completely later, 
No modules have yet been identified which will require changeout after e v e r y  
mission. If this were the case, this would likely be accomplished roboftically 
using only one IVA crew man; once again, to avoid EVA costs. A candidate l i s t  of 
EVA replaceable modules is shown in Table 5. This table includes esthmatcti timas 
and anticipated interfaces. Since RCS modules may involve fluid disconnects, t w s  
operations are shown to illustrate the differences. The fluid QD's lengthen t h e  
time due to the additional effort required to assure the crew's safety 
(installation of spill containment shrouds and check out following installat~on), 

Two major contingency operations identified are engine removal (waic:h c o u i d  
also be routine) and aerobrake repair. Aerobrake repair is included at this point 
as a possibility. It is too early to say exactly what aerobrake repair implies or 
what type of failure it may suffer. Holes could be repaired either by parching or 
panel replacement. Aerobrake removal to ease servicing would be desirable but 
isn't a contingency operation. This would be included in overall processtng f i o t ~  
near the end of pre-mission processing and the beginning of post mission processing, 

ENGINE SERVICING 

Several levels of engine maintenance are identified as detailed an Cable L k ,  

Two types of scheduled maintenance are shown, operations performed after si7ery 
flight and those performed every 10 missions. The latter operations are niesre 



x t e t s  ve snd  performed in addition to the regularly scheduled maintenance, Tbey 
a ' s n  ii7ciude EVA operations (tdrbo pump inspection and line replaceable unit (IRU) 
r z l j l a c e ~ c n t > ,  The engine removal and replacement operation is detailed as we11 as 

Q.-?L-  ~.osslble unscheduled engine repair operations, Unscheduled maintenance could 
L:L~' .> the engine while it is attached to the OTV. This would involve 

= ~ s z . ~ t l a ~ l y  replacement of an LRU that failed prematurely, A removed engine could 
Gv2 a f a J l e d  LRU repaired in a SS workshop if future analysis showed this to be 

rails, Any major repair of the engine will entail removal and return to earth 
I e L a  ."re 

Trie tasks listed are indicative of the types of operations viewed as 
--", - L c s 1 5 ~ e ,  Table 6 is an example of the ground maintenance planned for the RL-10 
5 7 ~ c e  ?>jg Engine (ref, 2 1 ,  When the engine is further defined, the tasks will need 
r b , ~  re-evaluated. The turnaround maintenance tasks are to be fully automated so 
c 7 e y  ~ 7 ~ 3  be performed with IVA. The inspection tasks will need manned involvement, 
-2cse :le greater man hours assigned to the tasks. These tasks are listed 

4n.-a:e y from the OTV tasks previously discussed simply for ease of discussion, - p  - 
-e: _ I d  3e fully integrated with the OTV tasks as part of the ground tiaxiel~rze 

f c t , - - ~ ~ q - i o ?  performed to arrive at the appropriate maintenance schedule. If an 
c p 1 ~ 2  reqo~al were scheduled, the inspection would be eliminated, 

The e2ngine is expected to be the major item to be serviced and is also tbe 
ts,Ldc I , E  the present study. The view just presented is the baseline and 

: - eye  *ts middle ground; one between the ttw extremes of the long life, zero 
7 t l ; - tec t i l~ce  engine and a fully modular, space rebuildable engine. The baselint. 
- *gla;e '?AS :;axe SWU's specified (but not identifiedd so they may be inclcded sn the 

2 ~ l i r s s ,  These LRU's are envisioned to be small items such as transducers or 
, s r L c s r  3?xes which can be scarred with EVA compatibility without encurring a large 

~ ~ ~ h t  L; functional penalty. No major items like turbopumps, heat exchangers, 
r-s: z':anl>ers etc., are included as L R U k s .  Failure of these items would entail - nl 
1 . *.n;;2out a,?-d ground servicing of the failed engine* The weight and 
: -  >eraa%ty of making these E R U k  is felt to outweigh the advantage of - i~:, -h?seb EVA compatible. The one major item which nay lend itself to EVA (or 
.7ste! epAacernent would be the radiation cooled portion of the nozzle if ri-ele -. 3 - . t : ~ ~ t n  advantage to this, Therefore, the philosophy developed here is that 

c x a e  lanlure other than in a LRU will result in the replacement of that 
11: fact, engines will be replaced prior to failure if the health 

system detects an impending failure, 

'lo 7 : f lat  engine removal has been specified, some discussion is warranted on 
a- : - - s  will entail, An experienced ground crew under ideal conditions ( a i r  

~ l ~ d i r i s r a e d  test cell fully equipped with the necessary tools) can remove an RL-lO 
hours. The EVA crewmen are expected to replace an engine in four 
SS hangar, This short time is a goal which makes efficient DTV 
possibility. Two concepts for the engine-BTV interface are shcwn in 

2 ,  Concepts of this nature will be required. It will be necessary 
the OTV-engine interface as much as possible to enable both the engine 

f and provide the necessary functional integrity to the interface orce  
replacement has been effected. For this reason, it is desirable :o 
ssurant activated components as this eliminates a gaseous QD from ;he 

enterface, If the propellant tanks are left with a blank@$ pressure, a 
aE aa:ves will be needed on the vehicle side. The main engine valves should 

1 l a i n  v r t h  "Ie engine so they can be serviced after the engine has been removed 



(possibly on the SS, likely on the ground). The simplest interface design has all 
QD's aligned along a plane which separates the engine and the vehicle. This design 
type would lend itself to remote engine removal, which is a desirable feature. 
This approach would likely incur a weight penalty relative to an approach which 
minimizes weight at the expense requiring EVA assistance. Cost modelling o f  OTV 
servicing scenarios is expected to aid in recommending which approach t o '  use. 

SPACE STATION FACILITIES 

The functional and operational analysis just presented have identified five 
basic space station facilities which will be needed to support a space based OTV, 
The facilities are shown in Table 7. While the facilities are treated as separa.te 
items dedicated entirely to the OTV, in the actual space station they will be m o r e  
general purpose facilities designed to support the OTV, OMV and other spacecraft 
designed for SS servicing. At this point, the facilities are separated more for 
functional reasons than for hardware reasons. The actual SS facilities will 
probably recombine the functions into units logically arranged as part of the SS 
design effort. Therefore, the following facilities discussions emphasize the 
needed functions divided functionally. Possible overlaps are included in the 
individual discussions. 

The servicing hangar will house all the necessary items used fo~r servicing 
the OTV and other spacecraft. It should be a general purpose facility with some 
dedicated items specifically for servicing the OTV and the SS OMV as these two 
spacecraft will comprise the majority of the servicing requirements. fh means of 
mechanically holding the various spacecraft will be needed. A variety of 
umbilicals will also be needed, mostly electrical. It may be desirable to provide 
a pressurant umbilical as well. Propellants and other hazardous fluids will be 
handled at another facility. Power for lighting and power tools should be supplied 
as well as means of securing the astronaut, his tools, and any other loose items 
necessary. One current hangar concept (Figures 3 and 4) involves a translation 
mechanism for the crewmen and a rotary carriage for the spacecraft. This would 
allow the possibility of a quasi-EMU (extra-vehiclular maneuvering unit) in which 
the EMU (or spacesuit) shares the SS atmosphere through an umbilical carried with 
the translation mechanism. In this hangar, total portability would not be 
necessary since a combination of translation and spacecraft rotation will allow 
access to all portions of the spacecraft. 

As with the servicing hangar, many functions of the SS computer system have 
already been mentioned. Therefore, they will only be summarized here. Only a 
small portion of the SS computers'responsibilities will be represented by the OTV 
activities. The SS computer will function primarily as a link between the OTV 
computer, ground facilities, and the SS crewmen. OTV data stored during the 
mission will be down linked to the ground through the SS computer with a portion 
being retained for the SS crewmen to act upon (SS safety related items, for 
instance). After ground processing, an estimate of the OTV maintenance schedule 
will be returned to the SS. The SS computer will then factor in maintenance tasks 
discovered during post mission processing of the OTV and prepare a final 
maintenance schedule. The SS computer will also handle loading of the OTV ccsmp~l te r  
with mission specific data prior to the OTV mission. Part of the SS computer will 
also handle control of the many automated servicing mechanisms. These will include 
the SS RMS(s), refueling, and CCTV movement. 



The above mentioned f u n c t i o n s  may %ore  l o g i c a l l y  be  p a r t  of  t h e  OTW c o n t r o l  
s t a t - o n ,  C e r t a i n l y  i t ems  which a r e  e n t i r e l y  OTV s p e c i f i c  w i l l  be  f u n c t i o n s  o f  t h e  
37'7 ::oc:rc~I s t a t i o n ,  The major  i t e m  h e r e  i s  OTV r e f u e l i n g  and OTV LOS c o n t r o l ,  
" L ~ a  SS c o n p u t e r  w i l l  p robab ly  j u s t  moni to r  s a f e t y  r e l a t e d  items s o  i t  c a n  respond 
3--a4?1-1y if an emergency were t o  occur .  The b u l k  of  t h e  OTV r e l a t e d  s o f t w a r e  and 
ryske-: v i P l  r e s i d e  i n  t h e  OTV c o n t r o l  s t a t i o n  ( f u n c t i o n a l l y  a t  b e s t ) ,  The OTV 
- a - : r o l  s t a ~ h o n  w i l l  be t h e  pr imary man-machine Link between t h e  OTV and t h e  SS 
2rt?d,  S e v e r a l  DTV d i s p l a y  and equipment c o n t r o l l e r s  w i l l  b e  l o g i c a l l y  a r r a n g e d  
nere t o  enable e f f i c i e n t  BVA c o n t r o l  of t h e  v a r i o u s  phases  of t h e  OTV miss ion .  The 
>TV r o ? t r n I  s t a t i o n ,  a s  w i t h  t h e  s e r v i c i n g  hangar ,  w i l l  p robab ly  s h a r e  hardware  
w i i n  other s p a c e c r a f t .  T h a t ,  however, i s  a  Space S t a t i o n  i s s u e ,  

Thp OTV r e f u e l i n g  a r e a  w i l l  work c l o s e l y  w i t h  t h e  c o n t r o l  s t a t i o n ,  The 
~~?---n;lr; Eurac~ ion  h e r e  i s ,  o b v i o u s l y ,  r e f u e l i n g  of  t h e  OTV. However, s e v e r a l  o t h e r  
-ropeiIact and f l u i d  r e l a t e d  f u n c t i o n s  w i l l  a l s o  be  accomplished h e r e ,  The 
r ta?ere l -cg  a r e a  w i l l  r e p r e s e n t  a  s i g n i f i c a n t  p o r t i o n  of  t h e  SS mass s o  i t s  l o c a t i o n  
J I . ? ~  be i - r i t i c a l  t o  t h e  S S  c o n t r o l .  The d i s t u r b a n c e s  due t o  t h e  p r o p e l l a n t  
- r , -~sEe  r t r i l l .  a l s o  need t o  be  accommodated. 

T17e r e f u e l i n g  a r e a  w i l l  house  t h e  c ryogen  t a n k s ,  a n  OTV mechan ica l  
i.:Lel-i5ce, and t h e  n e c e s s a r y  u m b i l i c a l s  t o  a l l o w  r e f u e l i n g  of a l l  p r o p e l l a n t s  and 
; ~ ( ~ s s u l z a t s ,  An e l e c t r i c a l  u m b i l i c a l  i s  a l s o  n e c e s s a r y  t o  a l l o w  c o n t r o l  o f  t h e  OTV 
2 x 1  d s ~ ~  l i c k i n g  of OTV d a t a  s t o r e d  d u r i n g  t h e  OTV miss ion .  I t  i s  n o t  e n v i s i o n e d  - .. -.. A c ,  ~ % i : e r  s p a c e c r a f t  w i l l  be  a b l e  t o  u t i l i z e  t h i s  hardware f o r  t h e i r  r e f u e l i n g ,  
) :.IS .- ES d u e  mainly  to t h e  p h y s i c a l  s i z e  of  t h e  OTV compared t o  o t h e r  s p a c e c r a f t ,  
n ,- L.,,,xe~ ,.. L r e i c e l i n g  s t a t i o n  will l i k e l y  be  p rov ided  by t h e  SS f o r  t h e s e  s m a l l e r  

s p a c e c r b i c ,  (They a r e  a l s o  l i k e l y  t o  r e q u i r e  e a r t h - s t o r a b l e  p r o p e l l a n t s ,  n o t  
c r : o g e P ~ , )  S p a c e c r a f t  wish ing  t o  u t i l i z e  t h i s  f a c i l i t y  w i l l  accomodate t h e  OTV and 
-ct 1ric;i v e r s a ,  A l l  t h e  n e c e s s a r y  c o n t r o l  hardware w i l l  r e s i d e  h e r e  ( v a l v e s ,  
2 u s ~ s ,  rj.:um5ing, e t c , >  w h i l e  t h e  c o n t r o l  s o f t w a r e  w i l l  be  housed a t  t h e  OTV c o n t r o l  
s : r ? 'o i  Cne o r  more CGTVss w i l l  b e  n e c e s s a r y  i f  t h e  r e f u e l i n g  a r e a  i s  no t  v i s i b l e  
, pi>.- t b ?  C O - ~ ~ T O ~  s t a t i o n .  

" I  
>11e space s t a t i o n  w i l l  need t o  p r o v i d e  some s o r t  of  s t o r a g e  f a c i l i t i e s  f o r  

_ i t - 7  :':e PT'i and t h e  v a r i o u s  p a y l o a d s ,  These f a c i l i t i e s  w i l l  a t  l e a s t  provide 
~i?c'e?:cai  ~o1d-down and minimal power and d a t a  i n t e r f a c e s  t o  s u s t a i n  t h e  ~ d e h i c l e s  

dr7-*~r ,c  mode, D e s i r a b l e  f e a t u r e s  would be t h e r m a l  and meteoro id  p r c t z c ~ i o n ,  
sere c l - g  hangar  cou ld  p r o v i d e  a l l  of  t h e s e  a t  a l o s s  in u t i l i t y ,  These are, 

c c l z s z ,  space s t a t i o n  i s s u e s ,  However, t h e y  a r e  worth  some d i s c u s s i o n  h e r e  a s  
e aee sszveral m o d i f i c a t i o n s  p o s s i b l e  t o  t h e  b a s e l i n e  t i m e l i n e ,  F o r  i n s t a n c e ,  

c d p i c c d  a r d  DTV mat ing cou ld  be performed a t  t h e  s t o r a g e  a r e a  i f  t h e  p roper  
~.legnria"s-~~t c a p a b i l i t y  e x i s t e d .  The payload check-out cou ld  be performed h e r e  a s  
h e l l ,  l h i s  cou ld  s a v e  t ime  a s  w e l l  a s  minimizing t h e  movement o f  masses abou t  the 
\ - S  c h e r e ~ y  s a v i n g  SS p r o p e l l a n t ,  

n s  an a s i d e ,  t h i s  b r i n g s  up t h e  s u b j e c t  of t h e  m u l t i p l e  payload i n t e r f a c e s  
-:~:eaz~ry 0x1 t h e  payload that i t  o t h e r w i s e  wouldn? need,  C u r r e n t l y ,  t h e  STS 

t e r r * c e  n a l i f e s t s  i t s e l f  a s  t r u n n i o n  f i t t i n g s  and an e l e c t r i c a l  u m b i l i c a l .  The 
;I$, or  t h e  o t h e r  hand,  would r e q u i r e  some s o r t  of  a x i a l l y  a c t i n g  mechanical  

_:tczEaze and a s e p a r a t e  e l e c t r i c a l  u m b i l i c a l  t o  t h a t  u t i l i z e d  f o r  t h e  s h u t t l e ,  
"rzsunably one s f  t h e s e  two i n t e r f a c e s  cou ld  be  used by t h e  space  s t a t i o n  s t o r a g e  
I .  !i t r a d e - o f f  e x i s t s  between r e q u i r i n g  t h e  payload t o  s u p p l y  t h e s e  .. - c L _ e z ~ ~  +- v z :!nil s c a r r i n g  e i t h e r  t h e  s h u t t l e  o r  OTV t o  e l i m i n a t e  one of  t h e  



i n t e r f a c e s .  S i n c e  t h e  payload i s  launched o n l y  once w h i l e  t h e  STS and DTV make 
m u l t i p l e  t r i p s ,  t h e  mass p e n a l t y  may be  b e s t  a s s i g n e d  t o  t h e  payload.  This is a 
s u b j e c t  f o r  f u r t h e r  s t u d y .  

DOWNTIME AND LOGISTICS 

The t i m e l i n e s  d i s c u s s e d  s o  f a r  a r e  f o r  a  r o u t i n e  m i s s i o n  where no major  
f a i l u r e  h a s  occured which r e q u i r e s  a  d e l a y  t o  a l l o w  t h e  STS t o  b r i n g  up the needed 
s p a r e s  o r ,  worse y e t ,  r e t u r n  o f  t h e  OTV t o  t h e  ground f o r  e x t e n s i v e  s e r v i c i n g ,  
Very few m i s s i o n s  a r e  l i k e l y  t o  b e  " rou t ine"  and may w e l l  r e q u i r e  d e l a y s  which 
impact  t h e  b a s e l i n e  t i m e l i n e .  The l e a r n i n g  c u r v e  i s  l i k e l y  t o  e x t e n d  th rough  much 
of t h e  " r o u t i n e "  m i s s i o n  t ime  frame o f  t h e  e a r l y  t o  l a t e  1990". A f u l l y  debugged 
OTV-SS sys tem by 1994 i s  u n r e a l i s t i c  and a n  o p e r a t i o n a l  OTV by t h e n  is an ambitious 
goa l .  However, a l l  t h e  m i s s i o n  a n a l y s i s  t o  d a t e  s u g g e s t  l a r g e  p a y o f f s  f o r  the 
a b i l i t y  t o  f l y  LEO-GEO m i s s i o n s  on a  two week schedu le .  A c a s e  f o r  a n  OTV f l e e t  i s  
emerging . 

The o t h e r  r e s p o n s e  t o  downtime impac t s  i s  a  s u f f i c i e n t  s p a r e s  i n v e n t o r y  a t  
t h e  SS t o  avo id  t h e  m a j o r i t y  o f  t h e  d e l a y s .  S i n c e  f a i l u r e s  a r e  by n a t u r e  
u n p r e d i c t a b l e ,  t h i s  i m p l i e s  s t o r i n g  many s p a r e s  which may never  be needed,  
Unnecessary s p a r e s  c o s t  b o t h  i n  l aunch  mass f o r  t h e  s p a r e s  and i n  t h e  mass of the 
f a c i l i t i e s  needed t o  house  them. The space  s t a t i o n  i s  n o t  y e t  e n v i s i o n e d  a s  a 
f l y i n g  warehouse. It  i s  bad enough t h a t  i t  i s  becoming a  f l y i n g  s e r v i c e  s t a t i o n  - 
(OTV s e r v i c i n g  view p o i n t ) .  A s  a  p a r t  o f  t h e  e v o l v i n g  SS and OTV, a  comprehensive 
i n v e n t o r y  management e f f o r t  i s  recommended which w i l l  minimize s i m u l t a n e o u s l y  the 
r e q u i r e d  mass a t  t h e  space  s t a t i o n  and t h e  down t ime  i n c u r r e d  by t h e  OTV, Tlais 
would e n t a i l  a  h i g h  r e l i a b i l i t y  OTV coupled w i t h  a  component-by-component failure 
a n a l y s i s  t o  p in -po in t  l i k e l y  f a i l u r e s .  I n  a d d i t i o n ,  grouping t h e  h i g h  f a i l u r e  
i t ems  such t h a t  t h e y  may be  r e p l a c e d  a s  a  u n i t ( s )  i s  r e q u i r e d .  From day one ,  the 
OTV d e s i g n  must a d h e r e  t o  t h i s  modular ph i losophy  t o  some degree .  One spare unit 
c a p a b l e  o f  remedying s e v e r a l  f a i l u r e s  w i l l  b e  v e r y  v a l u a b l e .  It  h a s  a l r eady  
emerged a s  a  c o n c l u s i o n  t o  change o u t  a n  e n g i n e  f o r  any major  f a i l u r e  rather than 
r e p a i r  t h e  e n g i n e  on t h e  OTV. A r e u s a b l e  space-based OTV canno t  b e  op t imized  
a l o n e .  But r a t h e r  t h e  OTV and i t s  s u p p o r t  sys tem shou ld  be  o p t i m i z e d ,  
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Table  6 RL10 D e r i v a t i v e  Rocket Engine I n s p e c t  i o n  Task Times (con t inued)  

Inspection Type of Inspection Total Elapsed 
Area  Inspection Type of Fault Technique Access ML hlhlll hlhljl 

Glmbal Load Checkwta Exceeslve Wear G l ~ n b a l  I'ower Englne-A8 1 - 5 0  . 60 
Assembly Requlrcmcnt Check Installed 

Englne Plumblng Leak Check Leaks Vlsual Englne-As I 2.00 1. 00 2 men 
Installed 

TOTA IS 9: 34 6.09 

Turn Around Inspectlon Operations 

Engine External-Weldmeota, Damage, Component Vlsual 
Aasembty Ducts, Components, Security, Loose 

Fluld Llnes, and Iiardware 
Hardware 

As Installed I .50 .25 2 men 

Dlngnostlc Revlew All Computer Compar- N/A 
lson of Operating 
Slgnature 

Thrust Chamber Internal Combus- Slgns of Thermal  Vlsual 
Aaeemblg and tlon Chamber Wall Damage (Corrosion, 
Extendible and Injector Face Cracking, Plugging) 
Nozzle 

"Iiot tiectlon" Weldments, Ducts. Damage 
Mnnlfolde and 
Chnmbe r 'Ikbea 

Vleual 

Expanalon Nozzle Tube Cracks,  Spllte, Visual 
Iiolee 

Extendible Nozzle Slgns of Thermal  Vlsual 
Damage 

ie i i im Bysten internai-Spark N o  spa rk  
Ygnttton 

Throat I .17 . 17 

Dlrectly 1 .25 
Accesalble 

Dlrectly I .17 . 17 
Accesslble 

Dlrectly I .17  . 17 
Accesslble 
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Figure  3 - Deployable Hangar Concept 
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W .  J .  Kitchum 
General Dynamics Convai r 

The major goals of a  reusable space-based OTV a r e  i d e n t i f i e d .  In 
add i t ion ,  the  benef i t s  t h a t  a  space-based OTV o f f e r  over a  ground-ba.sed O T V  
such as  increased performance due t o  reduced i n e r t  weight/propellant 
requirements and reduced cos t  due t o  el imination of repeated vehicle 
d e l i v e r i e s  from Earth a r e  discussed.  The OTV mission requirements f o r  1991 t o  
2000 a r e  del ineated including s a t e l l i t e  de l ive ry ,  low t h r u s t ,  and manned 
missions. Several candidate configurat ion options t o  meet these  mission 
requirements a r e  presented. A comparison of the  cos t  of a  pound of payload t o  
G E O  f o r  ex i s t ing  upper s tages  and proposed reusable ground-based and 
space-based OTV's i s  presented showing the  space-based O T V  t o  be the  most 
economical. 

A representa t ive  space-based OTV servic ing f a c i l i t y  on the  Space Stdt ion 
i s  presented showing the  required berthing t r u s s e s ,  maintenance s h e l t e r ,  
propellant  s torge  tanks ,  e t c .  The maintenance philosophy which was followed 
in deriving the  space operations t a sks  and t ime l ines ,  i s  del ineated indica t ing  
t h a t  the  space-based OTV design i s  predicted on a  modular approach with good 
maintainability/accessibility f ea tu res  as  a  major design d r ive r .  General 
Dynamics extrapolated i t s  experience on current  ground-based operations t o  
a r r i v e  a t  the  tasks  and t imelines f o r  space-based operat ions.  The required 
space-based operations and t imelines a r e  compared t o  the  equivalent  
ground-based operat ions and an assessment i s  presented f o r  some of t h e  bas ic  
d i f ferences  in the  two operat ions.  The r e s u l t s  show t h a t  f o r  an average 
mission, i t  takes approximately 40 hours of crew time and u p  t o  four crewmen 
f o r  the  space-based operat ions.  For an average mission, i t  takes 
approximately 150 hours of hands-on-the-vehicle technicians time and 35 
d i f f e r e n t  crewmen f o r  the  ground-based operat ions.  Bas ica l ly ,  the  
ground-based operation requires more people because the  vehic les ,  so f a r ,  have 
been designed primari ly f o r  performance optimizat ion,  and mainta inabi l i ty  and 
a c c e s s i b i l i t y  has not been design d r ive r s .  Likewise, the  vehicle has been 
constrained by cargo bay dimensions f o r  a c c e s s i b i l i t y .  In c o n t r a s t ,  the  
space-based OTV wi l l  be designed f o r  maintainability/accessibility and  will 
have more bu i l t - in  t e s t  equipment f o r  checkout because man hours a r e  very 
expensive on o r b i t .  

A l i s t  of technology needs t o  meet the  space-based OTV goals i s  
presented,  and a  recommendation t h a t  these  technology needs be pursued 
vigorously i n  t he  near fu tu re  and t h a t  f u r t h e r  study i s  needed t o  define 
candidate OTV/Space S ta t ion  accommodations i s  p u t  f o r t h .  



NASA, DoD & commercial ETR missions considered 

GEO satellite missions 
- 70% ~ o m m ~ r c i a l  & NASA market share - 5 to 7 

missions per year (3  to 4 satellites manifested on 
each mission =. 10,000 Ib) 

- Servicing - 2 missions per year 
- DoD - 6 missions per year 

Low thrust LSS missions 
- 10,000 to 16,.000 Ib payload 
- 2 to 4 missions per year ( > 1 994) 

Manned GEO sortie missions 
- 1 per year (>1995)  
- 13,000 Ib payload round-trip 

Figure 1 

Review of planned OTV riiissions i nd i ca t e s  t h a t  irlost wi l l  be t o  

d e l i v e r  G E O  sa te1 1 i t e s .  LSS and nianned nlissions a r e  l a t e r  and 

fewer. 

Centaur G' 
(reference) 

Y I1 

Ground-based OTV 

ACCIOTV 

Space-based OTV 

Figure 2 

OTV concepts a r e  compared. The space-based OTV i l l u s t r a t e s  t he  iliipact 

t h a t  renloval of launch c o n s t r a i n t s  has on design.  



TRANSPORTATION COSTS TO GEOSYNCHRONOUS ORBIT ,. P 

- - , ,  , , a .  

(85 Klb Payload STS) . -  * 

9,500 Ib 14,000 Ib 19,000 Ib 
Payload wt to GEO 

Figure  3 

Effective cost  per pound of payload delivered t o  GEO i s  shown fo r  

current expendables and planned reusable orbi ta l  t ransfer  vehicl es.  

Costs include STS, OTV, and operations. Low cost propellant 

del ivery ( tanker)  i s  assullied fo r  space-based O T V ' s ,  



REPRESENTATIVE SPACE-BASED OTV SERVICING FACILITY 

Multiple Docking Adapters 
interface with Other 

Satelite 

Module Under 

Stowed 

F i g u r e  4 

A space-based OTV servicing f a c i l i t y  i s  shown identifying the 

operations and maintenance functions involved. 



SPACE-BASED OTV MAINTAINA13ILITY FACTORS 

F i g u r e  5 

These space-based OTV systelli el enients were i d e n t i f i e d  as  being t he  major 

f a c t o r s  con t r ibu t ing  t o  and impacting the  niaintainabil  i t y  of an 01'V i n  

space.  We cons tan t ly  weighed each of these  ma in t a inab i l i t y  f a c t o r s  i n  

fornlul a t i  ng t he  Space-Based OTV concepts.  



OTV MAINTENANCE PIQII[LOSOPII\( 

Three-level maintenance - based on Bevel-of-repair analyses 

1 OTV local maintenance 
a II Space station maintenance of replaceable units 
~d 111 Returri-to-earth maintenance 

;Stock spare parts based on reliability, criticality & cost 
@ Station storage vs shuttle delivery 

Stress modular construclion for replacement capability 

f3aovide operational flight instrumentation & built-in test 
* Fault isolate to replaceable unit 

Optimize EVA vehicle maintenance operations 
Consider safety in hazardous situations 

@ Tradeoff EVA vs support equipment 
- TV inspection 
- Robotic remove & replace 

Figure  6 

As1 01V 111ai nteriarice 1 ) l i d  l osoplty ericosli)ass i r ~ g  Space S t a t  i o r l  ope!-a t i o n s  was 

developed t o  t ~ e l p  us focus on t h e  e s s e n t i a l  e l e r ~ ~ e n t s  o f  i l~a i r i tenance 

sbi;l,l~ort requ i raaenLs. Tlae ilia i n tenance  p l t i  ll osop l~y  i s  based on t h e  Ihr-ee 

l e v e 1  s o f  slal'nteriance d e s c r l  bed below. 

Leve l  B rrtairrterlarlce c o n s i s t s  o f  t h e  s c l ~ e d u l e d  and unscheduled a c t i v i  l i e s  

khrat occu r  or] Clie v e h i c l e  o ~ h i l e  i t  i s  b e r t h e d  i n  t l t e  Space S t a t i o n  i i ~ a i n -  

t e n a w e  dock.  

Leve l  B I  niaintenance ellcallpasses t h e  o f f - v e h l c l e  r e p a i r  o f  r e p l a c e a b l e  

OTV caiiponents conducted a t  t h e  Space S t a t i o n .  The OTV rep1 aceab le  

unl  t s  w i l l  be d i s o o s i  t i o n e d  f o r  r e t u t - n  t o  e a r t h  o r  r e p a i r e d  a t  t h e  

s t a k i o ~ l  t o  t l i e  e x t e n t  p o s s i b l e  w i t h i n  t h e  t e s t  equip~irent  , spares  

a v a l l a b i l  i t y  and e c o i i o ~ i ~ i c  c o n s t r a l ~ ~ t s .  

Leve l  I I !  lnalntenance will I n v o l v e  noanla1 e a r t h  o r i e n t e d  d d s p o s l t l o n  f o r  

r e p a i r .  An extensdve ae la lys is  w i l l  u l  t i l r i a t e l y  p r o v i d e  the  necessary  

repair o r  d i s c a r d  d e c i s i o n  c r l t e r l a .  



EXTRAPO1,ATION OF CURRENT GROUND-RASED 
OPERATIONS TO SPACE-BASED OPERATIONS 

Space tug 
receivellaunch 

Ground-based OTV Space-based OTV 
turnaround turnaround 

turnaround 

@ Functions 
@ Manpower/skills 

Function allocations 
between ground & space 
Implications to Sf3 OTV design 
Space station support requirements 

Figure 7 

Tliis cha r t  i s  a  road niap showing how we have ex t rapo la ted  our present  experience 

with cryogenic upper s tages  t o  a r r i v e  a t  t he  tasks/tiianhours/nu~iiber of liien f o r  a 

space-based opera t ion .  We a r e  using our actual  Centaur experience f o r  receive 

and launch opera t ions .  We have used t h a t  experience in the  past  t o  collie u p  with 

projected turnaround t a sk s  f o r  a  ground-based veh i c l e .  This was accoilipl ished o n  

t he  Space Tug Study i n  t he  e a r l y  7 0 ' s .  We a l s o  looked a t  the  t u r n a r o ~ ~ n d  of a  

ground-based OTV i n  a  study f o r  MSFC in  1980. Using t h i s  infor~i ia t ion as a data 

base,  we performed our opera t ions  ana ly s i s  t o  i d e n t i f y  t he  required space-based 

operat ions/ t imel  i  nes/manpower. 



GROUND-IOASED VEHICLE TURNAWOUNH'b ASSESSMENT 

* Ship, integrate & launch status has not been attained 
- Tendency to ship short & assemble missing parts later 
- Requires some disassembly & component checkout 
- Assumes man can compensate for system shortcomings 

a Vehicles designed primarily for performance optimization 
- Maintainability & accessability not a design driver beyond providing 

access panels 

@ Checkout accomplished with GSE external to vehicle 
- Requires multiple interfaces (manual connection) 

Personnel required to analyze data & write maintenance plan 

Preventive & corrective maintenance accomplished manually 

Inspection requires dismantling to verify vehicle integrity 

Operation requires download, upload & integration with shuttle 

Operation requires transport &-interface with maintenance facility 

* QA & safety support required because of dismantling process & 
personnel involvement 

Figure 8 

i/\re r a v e  i~iade an assessnient o f  how we would tu rnaround a ground-based v e h i c l  e 

L I L ~ C T  t o d a y ' s  c o n d i t i o n s  a t  o u r  f a c i l i t y  a t  t h e  Eas te rn  Tes t  Range i n  F l o r i d a .  

Th i s  was done t o  i d e n t i f y  t h e  tasks  t o  be performed, t h e  t i m e l i n e s ,  and t h e  

rluriiker o f  d i f f e r e n t  personnel  i n v o l v e d .  We used t h i s  as a da ta  base f o r  

s e n e r a t i n g  t h e  tu rnaround tasks  t o  be a c c o r i i ~ l i s h e d  a t  t h e  Space S t a t i o n  f o r  

a soace-based O T V .  

Fs r s  t of a1 1 we ii iust c h a r a c t e r i z e  a p resen t  day reusab le ,  ground-based v e h i c l e  

arid I-iow i t  i s  processed 011 t h e  ground so t h a t  a co~ i ipar ison w i t h  an i~ i i p roved  

s t a t ? - o f - t h e - a r t  space-based v e h i c l e  can be mean ing fu l .  Th i s  c h a r t  c h a r a c t e r i z e s  

a p c t e n t i a l  p resent  day reusab le ,  ground-based v e h i c l e  and how i t  would be handled 

a t  E T R .  The backgt-ound o f  how we have checked - o u t  and launched upper stages i n  

the p a s t  has a b i g  i i i ipact  on t h e  approach used today;  Present  day v e h i c l e s  were 

not designed u s i n g  m a i n t a i n a b i l i t y  and a c c e s s i b i l i t y  as des ign  d r i v e s .  The 

types  o f  o p e r a t i o n s  r e q u i r e d  t o  be pe r fo r~ i i ed  a r e  f a i r l y  l a b o r  i n t e n s i v e .  I n  

a d d i t i o n . ,  a ground-based v e h i c l e  must be downloaded, uploaded and i n t e g r a t e d  w i t h  

the shut1;I  e. 



SPACIS-BASE11 OTV TURNAROUND ASSESSMENT 

0 Vehicle is fully checked on ground with planned assembly at the space station 

* Turnaround operations are optimized by restriction to Level I maintenance 

* Maintainability is a primary vehiclelsystem design requirement 
- Accessibility for remote 8 EVA operations 
- Modular construction of space-based OTV simplifies & speeds up 

replacement process 
* Checkout accomplished with vehicle built-in test capability 

- Vehicle computer system evaluates 8 registers fault during mission 
- Vehicle status relayed to station via RF datalink or through data bus 

interconnect after berthing 
- Interfaces automatically connected during berthing operations 

Computer system analyzes 8 displays vehicle status & presents basic 
maintenance plan 

Majority of maintenance tasks are accomplished by semiautomatic (or robotic) 
equipment 

* Inspection by TV without tear down operation 

No shuttle interface operations required beyond initial delivery 
* Vehicle is not subjected to space-Earth transition environment 

* Vehicle berths at maintenance facility 

Operations ph~losophy assumes vehicle is operational after good fl~ght with aid of 
instrc~~nentat~on B co~npi~ter  assessment 

Vehicle does not need to be dislnanlled after each mission, wl i~c l i  minimizes 
damage clue to ma~ntennnce operat~ons 

F i g u r e  9 

An assess~lient of Space Stat ion operations,  nisi ntenance phi 1 osophy and space- 

based O T V  design features  was conducted t o  deternline what the differences 

were from a ground-based systern tha t  a f f ec t  the turnaround times and crew 

requirenlents. The r e su l t s  of the assessnlent a re  presented here t o  pro- 

vide solile of the  reasons why a space-based O T V  turnaround operation can 

be acco~llpl ished i n  l e s s  tinle and with considerably fewer men than a 

ground-based operation.  



ClOMPARPSON OF GROUND-BASED vs SIPBCE-BASED TASKS 

' -me 
{Air) MH 'bask No. Reusable Ground-Bgsed Vehicle - Task 

Analyze data 8 prepare maintenance plan 
Transfer stage from pallet to maintenance 
8 test stand 
Remove stage acce'ss doors 8 connect GSE 

Inspect structural elements 8 thermal control 
lnspect tanks, supports 8 Interior 
lnspect MLI 8 thrust structure 
lnspect docklng mechanism 

lnspect avionics 8 flight control units 
Inspect engine llood 8 pressure lines 
Ilispect fuel cells 
Perform scheduled checkout 8 fault isolate 

Perform leak check on LtI2 il LO2 
tanks 8 eiigine 
Insl.iect stage'orbiter interface 
(post flcgtit lalltt ISO) 
Review Inspec,tiori Y checkout resillts 
8 cornplete niainteri,ince plan 

Pertorrn urisched~iled malnlenance 
Peilorm sched~iled liialntenarlce 
- structilres 
Perlorm schedirled maintenance 
- dVl~lllCS 
Perforrii scheduled rndlntenance 
- prop~ilsion 
Pertoriil sctiedirled mnintenanco 
- tlierrndl coritrol 
Male stage 8 slage!ort)~ler adapter 
Ciiech oiil doch~rig rnechaiiisrn 
Pre~are  for s l o r ~ i ~ ~ e  

2 1 6 Mociilor stage 11) sloiage 
niot in tiine iirle 

2 1 7 Remove from storage 

Space-Based OTV 
Equivalent Task 

Query computer about fault status 
OTV docks at maintenance facrlity 
(~ncludes rendezvous 8 capture) 
Automatic connection through 
berlhing interface 
Vlsual inspection (TV) 
Visual inspect~on (TV) 
Vrsual inspection (TV) 
Vlsual inspectron dtrring capture 

before docking (TV) 
Visual inspectron (TV) 
Visual inspeclron (TV) 
Visiial lnspection (TV) 
lnltlate test routine 8 fault isolate 

Monitor tor propellatit leakdye 

Formulate integrated malritenance 
plan (part~ally aiitoi~ialed fi~nction) 

Perform tinscheduled maintenance 
P*rform scheduled rna~rileiiarice 

Time 
(hr) MH 
.15 .30 

3 . 4 0  7 .20  

Avg Ac!] 
' ( 2  d 5 )  (8 . i i l)  

8 3 5  17 10 

Deactivale 8 stow all systarns 

Actrvate OTV 8 niairitenance tacility . . 
(Not defrrizd at this time) 
Perform system operational teslirig 4 5  1 ;.I0 
Perform corrective riiairiteciarlce 
Perforni system operatronal test~ng 
dller correct~ve n1arntcnani:e 

Matt, payload to OTV 4 1 5  8 3 0  
Verify O lV Ipdy l~ad  interlace 15 .in 

Perform payloadiOTV inlegration lest .30 1 013 

( 2 1 8 Accomplish inirss~o~~-pecrrI~ar 
: 6 CO 3 1 0  O i l  pi cparatiorls 
1 1 ,  1 1  2 1 9 Pei fo~ i i i  sysleiiis lest 
I , t i  I 2 1 10 Correct faiiils 

? 1 1 1 R e v e ~ ~ l y  systeni 'iiler currection 
7 50 17 8 0  2 1 12 Secure trorn syslern test 
3 2 0  5 2  3 0  2 2.5 Mate stage 8 spacecraft 
1 00 8 0 0  2 2 6 Verily stageispacecraft interface 
Idol in 

tii:ie liiie 2 2 7 Perforin integiated system test 
Ci  LiC 2 1.00 2 3 1 Transport payload (stage 8 spacecraft) 
6 30 7 7  0 0  to or biter 
;i uti 2.1 0 0  2 3 2 Install iii orblter 
5 00 25 0 0  2 3 3 Ver~fy orbiler.'payload interface 
1 00 4 GO 2 3 4 Condirct rntegraled systen~s test (ORWPL) 

2 3 5 C h e d  stalus - stagelshuttle interface 
(after stiiittle up-load) 

3 00 12 0 0  2 4 1 Conduct orbiteripayload ~ntegrated test 
: 00 4 0 0  2 4 3 Corrduct iaiinch reddiness test (slagel Perform prela~lncir operations 3 .00  8 . 0 0  
-1 00 20 0 0  2 4.4 Load propell;ri?ts 8 pressiirdnts Transler propellacits from station t j  0 0  12 0 0  

to OTV 
0 25 1 30 ? 4 5 Contltict terlnlnal co~intdown Ldunch OTV/payload 1.45 3 30 

30 2 30 3 1 1 Safe sldge Trarisfer OTV propellarils to stat~on 1.45 3.30 
6 i 10  3 8  0 0  3 1 2 Purge nialn propcllan't tanks /Perlinen[ 01-V ddla in comptiter niemory) 
30 l 00 3 1 3 Reniovcl flic~til data recorder tapes 

ii ,iii 1 10 30 3 2 1 Rerilove stage from orbiter 
1 00 113 0 0  :i 3 1 lrnrisler stage to IMF 

Noi r i i  rtu!rricil 1~1rri~3rot111li 
. . l , , ~ , O i , ~ ~ ~ , ~ , I t ~ i l  i l l  ~jtllL?l l<lhl\ 

Figure 10 
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The t a s k s  and t i t i les r e q u i r e d  t o  pe r fo rm a tu rnaround o p e r a t i o n  on a 

reusab le  ground-based v e h i c l e  were i d e n t i f i e d ,  which p rov ided  t h e  data  

base necessary t o  produce t h e  space-based OTV tu rna round  t i m e l i n e s .  

T h i s  space-based OTV da ta  i s  l i s t e d  he re  t o  correspond w i t h  t h e  sunnlary 

ground-based t a s k s  t o  show a coniparison between t h e  two d i f f e r e n t  ~iiodes 

o f  o p e r a t i o n .  

OTV TURNAROUND 
Sliclter Configllratiol~ - No EVA 

Figure 11 

TASK 

Rendezvous 8 
capture 

Berthing 

Propellant 
transfer 

Inspection 8 
planning 

R/R ACS modules 

System test 

Payload integration 

Propellant 
transfer 

Prelaunch 

Launch 

The nonnal space-based OTV turnaround t i n l e l i ne  begins when t l i e  OTV approaches 

t he  Space S t a t i o n  w i t h i n  a  s p e c i f i e d  d is tance  (we are c u r r e n t l y  us ing  one m i l e ,  

as t l ie  d is tance)  t o  a l l ow  OMV rendezvous and docking w i t h  t he  OTV. The OFtV 

w i l l  maneuver t he  OTV f o r  capture w i t h  t l i e  s t a t i o n  RMS, which w i l l  be used t o  

p lace  the  OTV i n  t l i e  be r t l i i ng  s t r uc tu re .  

Tlie coli lplete OTV turnaround a t  the  Space S t a t i o n  w i l l  r e q u i r e  f ou r  working days 

and a dedicated IVA crew. EVA w i l l  n o t  be requ i red  f o r  nonnal turnaround opera- 

t i ons .  The t o t a l  elapsed task t in ie i s  34 hours and 30 niinutes. 

TIME (HOURS) 
MH 

The prelaunch and launch times were der i ved  fro111 t l ie  ac tua l  t i n ie l  ines es tab l  ished 

f o r  the Shu t t le ICen taur  I n t e r n a t i o n a l  So la r  Po la r  Miss ion.  

32 30 29 

':0° 6:OO 

1 2 0  
2:oo 

1:45 3:30 - 
2:45 5130 

8:35 7: 10 

33 31 

4:OO - 
1& 

27 

1 :30 

10:30 

12.00 

8.00 

3:30 

69:40 

34 28 24 35 20 25 17 26 21 14 15 18 16 22 19 12 23 13 10 8 9 11 1 2 5 3 6 4 7 



0 T i r  PERIODIC & UNSGI-Ii-nETOULEI) MAINTENANCE 
Shelter Configuration 

/ Periodic maintenance 

1 RlR fuel celiibati 5:40 0 

/ RIR engine 65:30 25:20 
! 
1 Unschsdalled maintenance 
4 
I 
1 R/R avionics nodule 

12:45 

F i g u r e  1 2  

TI: s clnaa-l oresen ts  t h e  t i l l ~ e l  ir les f o r  ~ n a i n t e r l a ~ l c e  tasks  t h a t  a r e  n o t  cons ide red  as 

1jal.t O F  tihe r1oi.sna8 tua.~~at-ound c y c l e ,  because t l ~ e y  do r io t  occu r  on each arid eve ry  

I I ~ I S S  i o n .  P e r i o d i c  e i a i ~ ~ t e ~ l a n c e  w i l l  o c c u r  on a  t i m e l y  b a s i s ,  e . 9 .  e r l g i r ~ e  cl langeout 

a r t e r  ten) i i ~ i s s i o n s  o r  sollie pir-edeteo~riined t i m e  o f  o p e r a t i o n ;  fuel c e l l  s e r v i c i n g  

a f t e r  f i v e  i s i s s i o n s ,  e t c .  Unscheduled maintenance i s  p e r f o n ~ ~ e d  as a  r e s u l t  o f  

equs~wlae~it. f a i l u r e  o r  danlage and occurs  g e n e r a l l y  on  a  rarldorr~ b a s i s .  

Our aalal ysds r e v e a l s  t h a t  eng ine  and tank 111odule cl langeouts w i l l  each r e q u i r e  two days 

t o  acca~q,il islk t h e  t a s k  w i t h  an EVA i r i v o l v e n e n t .  Aerobrake daruage r e p a i r  t i r ~ i e s  a r e  

d i f f i c ~ i l  t t o  es tab l l ' s l r ,  however, we have de ten i i i ned  t h a t  one day o f  EVA o p e r a t i o n s  

aaiould p r o v i d e  f o r  i l l i no r  darrlage r e p a i r .  I n  ariy case; %lie aerobrake c o i ~ l d  be relaoved 

anti a e p l , ~ c e d  w i t l i i r i  a one day o p e r a t i o n .  The f u e l  c e l l s / b a l t e r i e s  and a v i o n i c  

siiodil'i es can be r e p l a c e d  u t l l  i i r i r l g  I V A  s a n o t e l y  c o n t r o l  l e d  equipolent and cal l  each be 

acco:iipl l shed i n  1 ess t h a n  t h i e e  hours .  



MAN-HOUR COMPARISON FOR 20-MISSION YEAR 

Predicted Task 
Requirements per Year 

4 fuel cell R/R 

1 aerobrake repair 

Figure 13 

A p r o b a b l e  20 n ~ i s s f o n  y e a r  was fo t i nu la ted  and s u n r ~ ~ a r i z e d  t o  p r o v i d e  a nleans f o r  

assessn~ent o f  crew man-hour r e q u i r e n ~ e n t s  p e r  y e a r  a t  t l i e  Space S t a t i o n  t o  support 

t h e  OTV. The i n f o n l ~ a t i o n  ga ined  a l l o w s  f o r  man-hour coniparisons between tlse 

she1 t e r  arid lnaintenance 111odu1e c o r i f i g u r a t i o n s .  Tlie c l i a r t  a l s o  p resen ts  the  ex-  

pec ted alnourit o f  EVA envo l ven~en t ,  w l ~ i c h  an~ounts t o  l e s s  t h a n  6% o f  t h e  t o t a l  

Leve l  I lnaintenance e f f o r t .  

P r e v e n t i v e  n~a fn tenance  c l~angeou ts  were s e l e c t e d  on t h e  b a s i s  o f  f u e l  c e l l  rep1 ace- 

ment eve ry  f i f t h  ~ n i s s i o n  and eng ine r e p l a c e n ~ e n t  a f t e r  t e n  ~ s i s s i o n s .  Urisclledul ed 

maintenance i t e n s  and f requency o f  replaceinents were s e l e c t e d  a r b i t r a r i l y  t o  show 

a v i o t l i c ,  aerobrake and tank   nodule a c t i v i t i e s  t h roughou t  t h e  yea r .  Tank lnodul e 

cllarigeou t c o u l d  'a1 so r e p r e s e n t  a c o n f i g u r a t i o n  change f o r  a manned ~ n i  s s i o n .  



COMPARISON OF GROUND-BASED vs SPACE-BASED 
Total Taslc-Times 

Total No. of 
Average No. of Men Required 

Task-Time Manhours Men per Task For All Tasks 

All ground-based OTV 152:45 2534:30 16.6 35 
task-! lmes listed 

Space-based OTV avg 38:45 85: 10 2.2 4 
task-times for nominal 
20-mission year 

Figure 1 4  

l t e  accu~;iulative t ask  tiiries t h a t  a r e  required t o  perforin a  turnaround operat ion 

011 qround-based and space-based veh ic les  a r e  presented here  w i t h  t h e  assoc ia ted  

l:lan-tlours atid average nian-loading requirements.  A colunin t o  show the  t o t a l  

n;,i:lbe, o f  illen required t o  perfor111 a l l  t a sk s  has been included,  which takes  i n t o  

aczount tile peal< loadinq and t o t a l  s k i l l  level requirements. The task  times 

i n c " i ~ , d ~  a i l  t a sk s  required f o r  ground o r  space-based ope ra t i ons ,  as an average 

f o r  t h e  rioiilinal 20 ~lr iss ion year .  Note t h a t  an add i t iona l  ground support  crew 

of  25 a r e  a l s o  required t o  support  e i t h e r  t he  ground o r  space-based opera t ions .  



OTV TECHNOLOGY NEEDS 

High mass fraction vehicle 

* Low vapor pressurellightweight 
tankslmeteoroid protection 

* Composite structure 
0 Modular for maintenance 

Efficient propellant management 
* Thermal control 

Propellant acquisition 
* Tank pressurization 
* Propellant conditioning 
* Propellant transfer 

Mass gauging 
0 Propellant utilization 

High performance engine 
* High lsp 

Throttling 
* Low inlet pressure1NPSP 
0 Reusable/space maintainable 

Lightweight aerobrake 
Materials 
Heating 

Avionics. 

Redundant 
Fault tolerant 

* Aerobraking GN&C 
Fault detectioniisolation 

* Rendezvous/docking 

Servicing 
* Cryogenic propellant transfer, storage 

& reliquefication 
* OTV payload handling & integration 

* Maintenance 
* Deploymentiretrieval 

Low-cost propellant delivery 

Figure 1 5  

A sunilliary o f  OTV techno logy  needs i d e n t i f i e s  t h e  n ia jo r  areas 

r e q u i r i n g  a t t e n t i o n .  

@ Coilsidered ground- & space-based reusable OTVs 

Determined potential advantages of space-basing 

0 Defined operations, servicing 8 maintenance 
requirements for reusable cryogenic OTVs 

Establislled space-based O'TV technology 
tlevelopment areas 

@ Furlher s t ~ ~ d y  is needed to better define candidate 
OTV/SS accommodations 

Figure 16 
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A. T. Zachary 
Rockwell InternationallRocketdyne Division 

The remoteness of space requires that future rocket engines operate with inte- 
grated L~eaSt-h monitoring and control systems that ensure maximum flight reliability 
and indicate the need for maintenance only when required. In addition, maintenance 
concepE; m d s t  be developed that are consistent with the remote and hostile environ- 
nlent of space. 

INTRODUCTION 

The effective use of space will require the advent of a low-earth orbit space 
station and creation of such a station has been initiated as directed by the President 
of the ?Jn"ied States. To effectively utilize such a station will ultimately require 
Tile developrrient of an Orbit Transfer Vehicle (OTV) for space transportation. The 
~ n 7 - q ~ ~  characteristics and requirements of a space-based OTV raise a number of major 
issues particularly those related to vehiclelengine servicing and operations. These 
issues v i i l ,  to a major extent, be met by more fully utilizing recent and projected 
advances in control and diagnostic systems that will provide greater flight reliabil- 
r t - J  and vrrtually eliminate scheduled maintenance. 

CONTROLS AND DIAGNOSTICS 

indicated in table I, advances in computer technology have not been fully 
v r i l l z e n  in rocket engines. The capability of providing engines with Integrated 

Table I. Controls and Diagnostics 

e TECHNICAL ISSUES 

COMPUTER TECHNOLOGY HAS OUTSTRIPPED ROCKET TECHNOLOGY 
e ADVANCED ENGINES REQUIRE MORE PRECISE CONTROL WITH: 

LESS POWER DEMAND 

e LIGHTER WEIGHT 

e INCREASED RELIABILITY 
o REUSABILITY AND SPACE BASING REQUIRE COMPLETE AND IMPROVED 

DIAGNOSTICS CAPABILITY 

RECOMMENDATION 

@ DEVELOP MICROPROCESSORS AND ADVANCED SOFTWARE FOR 
ENGINE USE 

@ DEVELOP CONTROL VALVES AND SENSORS PROVIDING MULTI- 
VARIABLE CONTROL 

- DEVELOP IN-FLIGHT DIAGNOSTIC SYSTEMS 



Control and Health Monitoring (ICHM) systems will require advancements in microproc- 
essor, software, multivariable controls, and particularly sensors. The ideal func- 
tional capabilities of a rocket engine control system will require the type of tech- 
nology growth illustrated in figure 1. The result will be a system capable of per- 
forming the control system functions listed in Table 11. The ICHM presently 
envisioned consists of in-flight and between-flight sensors whose output is processed 
in a computer with the resulting control system actions, maintenance actions, and 
maintenance information storage. A simplified concept of the system is shown in 
figure 2. 

~ADAPTIVEILEARNING COMWTER CONTROL @ . ON-BOARD PREDICTIVE FAILURE ANALYSIS 
.MAINTENANCE ROBOTICS 

DIAGNOSTIC/HEALTH MONITORING SENSORS 
FAST RESPONSE CONTROL SENSORS 

e MULTIVARIABLE/OPTIMAL COMPUTER CONTROL 

. LIGHTWEIGHT ELECTRICPNEUMATIC ACTUATORS 

e REDUNDANT MULTILOOP COMPUTER CONTROL . CONTROLPERFORMANCE DATA SENSORS 
@ HYDRAULICIPNEUMATIC ACTUATION 

TIME 

Figure 1. Controls and Diagnostics 

Table 11. Projected Control and Diagnostic Functions 

e CLOSED-LOOP ENGINE CONTROL 

e CRITICAL COMPONENT W E A R  DIAGNOSTICS AND LIFE PREDICTION 

e BETWEEN FLIGHT SERVICING IDENTIFICATION 

IN-FLIGHT FAULT DETECTION AND AVOIDANCE 

MAINTENANCE 

With the relative remoteness of the engine and reliability such an important con- 
cern, maintenance actions (e.g., inspections, checkouts, and preventive replacement) 
must be minimized because of the difficulties of working in a vacuum environment as 
well as the cost of supplying and supporting parts, equipment, and personnel at a 
space station. To accommodate these considerations without seriously affecting per- 
formance, the Integrated Health Monitoring system will be relied upon to specify the 
timing and extent of maintenance actions. This system will provide a detailed assess- 
ment of engine health through the use of advanced sensor, inspection, and fault 
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isolation technology and ameliorate the effects of a malfunction and reduced mainten- 
ance through control of failure propagation. 

With the use of advanced interface concepts that provide high reliability and 
ease of connect/disconnect by robots or suited astronauts in an extra vehicular ac- 
tivity, the engine would be configured into several modules, each containing one or 
more related components. Any module, or the entire engine, could be removed and re- 
placed quickly. Upon return of an OTV to the station, routine health monitoring in- 
spections would be undertaken (perhaps automatically by robots). The results would 
be combined with the data from flight monitoring to isolate any faults or impending 
failures. The affected module(s) would be removed and replaced with new or repaired 
modules, which inventoried at the space station. After a functional checkout, the 
engine would be ready for the next mission. Initially, defective modules would be 
returned to earth for repair. The modules, because of their light weight and compact 
size, should be easily accommodated on regularly scheduled shuttle flights, As the 
space station evolves, a repair shop capable of doing many repairs could develop. The 
modules would be brought into a pressurized environment so disassembly could utilize 
the full dexterity of maintenance personnel. Modules would be returned to earth only  
for complex repairs or overhaul. 

CONCLUDING REMARKS 

Servicing requirements and space operations will directly impact the design of 
future rocket engines. Checkout and launch requirements, maintenance philosophy, 
manned involvement, and space versus ground rehabilitation of systems or colnponents 
are key considerations in maintaining a rocket engine system in space. The nerve 
center of an engine is the control system and with continuing advances in control and 
diagnostic technology particularly in the areas of computers and sensors, it will 
make space-based operations practical. 



Grahme F i s c h e r  
Grumman Aerospace C o r p o r a t i o n  

People can p e r f o r m  work i n  t h e  a i r l e s s  env i ronment  o f  space by  e n c l o s i n g  
t h e i r  bod-ies i n  space s u i t e s  ( E x t r a  V e h i c u l a r  A c t i v i t y  - EVA) and d o i n g  t h e  
wo rk  theanselves o r ,  by  rema in ing  i n s i d e  a  p r e s s u r i z e d  volume ( I n t r a  V e h i c u l a r  
A c t i v i t y  - IVA) and c o n t r o l l i n g  e x t e r n a l  work which i s  per formed by mechanica l  
arms . 

The l a t e s t  s t a t e  o f  t h e  a r t  mechanical  arms u t i l i z e  B i l a t e r a l  Force 
Re f ;ec t ion  (BFR) t o  p r o v i d e  o p e r a t o r s  w i t h  some " f e e l i n g "  o f  what i s  happening 
a t  t h e  w o r k s i t e .  BFR i s  a  requ i rement  f o r  t a s k  e f f i c i e n c y ,  p r o v i d i n g  an o r d e r  
o f  magni tude improvement i n  t a s k  t i m e  when compared w i t h  a l l  o t h e r  c u r r e n t l y  
known c o n t r o l  modes. 

IVA can be conducted f r o m  an O r b i t e r  c a b i n  o r  Space S t a t i o n  c o n t r o l  room 
utilizing SAM - Sur roga te  A s t r o n a u t  Machine - t o  p e r f o r m  t a s k s .  SAM has 2 
d e x t r o u s  arms, a  r i g i d  arm ( s t a b i l i z e r )  t o  m a i n t a i n  (and a l t e r )  h i s  l o c a t i o n  
r e l a t i v e  t o  a w o r k s i t e ,  i l l u m i n a t i o n ,  a  TV camera and a  sma l l  t o o l  c h e s t .  SAM 
i s  t r a n s p o r t e d  t o  and f r o m  w o r k s i t e s  by  t h e  S h u t t l e  Remote M a n i p u l a t o r  System 
(RNS) , 

Another  method o f  c o n d u c t i n g  I V A  i s  t o  t r a n s p o r t  "Man-in-a-can" t o  a  
worksite w i t h  t h e  dex t rous  arms a t t a c h e d  t o  t h e  can. A c l o s e d  c a b i n  c h e r r y  
p i c k e r  can p e r f o r m  t h e  t a s k s  o f  t r a n s p o r t i n g  m a t e r i a l s  as w e l l  as t h e  d e x t r o u s  
t a s k s  o f  i n s t a l l a t i o n  and removal .  

E V A  can be conducted i n  a  v a r i e t y  o f  ways. We b e l i e v e  t h a t  t h e r e  w i l l  
no-c be e x t e n s i v e  use o f  a  Manned Maneuvering U n i t  around a  Space S t a t i o n  f o r  
work a c t i v i t i e s  because o f  t h e  r i s k  o f  human e r r o r  and t h e  p o t e n t i a l  damage 
t h a t  may r e s u l t  t o  t h e  Space S t a t i o n .  Rather,  we b e l i e v e  t h a t  most EVA work 
will be conducted on t h e  RMS/MFR ( M a n i p u l a t o r  Foo t  R e s t r a i n t ,  f o r m e r l y  known 
3s  %Re Open Cherry  P i c k e r  - O C P ) .  T h i s  system o f f e r s  t h e  advantage o f  
enhaf?c ing  Space S t a t i o n  s a f e t y  by u s i n g  c o l l i s i o n  avo idance s o f t w a r e .  

E a r t h  based t e s t s  o f  space t a s k s  have been conducted on 6 degree o f  
f r e e d o m  m o t i o n  s i m u l a t o r s  and underwater  n e u t r a l  buoyancy f a c i l i t i e s .  A one 
t o  o ~ e  correspondence has been demonstrated between t h e  t a s k  t i m e s  r e q u i r e d  on 
t h e s e  two t ypes  o f  f a c i l i t i e s .  However, no correspondence has been 
demonstrated y e t  between t h e s e  e a r t h  based t e s t  f a c i l i t i e s  and t h e  a c t u a l  t a s k  
time r e q u i r e d  i n  t h e  ze ro  g r a v i t y  o f  space. 

Two t i m e l i n e s  a r e  shown f o r  p e r f o r m i n g  t h e  same t a s k  i n  two d i f f e r e n t  
ways E V A  and HVA.  The EVA t a s k  r e q u i r e s  more t i m e ,  p r i n c i p a l l y  f o r  
p r e p a r a t i o n  ( a l t h o u g h  t h i s  MOTV s c e n a r i o  assumes t h a t  p r e - b r e a t h i n g  i s  not 
required), t h a n  t h e  I V A  t a s k .  The EVA work i s  more e f f i c i e n t  (when c u r r e n t  
s t a t e  o f  a r t  dex t rous  arms a r e  used f o r  IVA) ,  b u t  t h e  t o t a l  j o b  t i m e  i s  
s i g n i f i c a n t l y  l e s s  f o r  I V A  because i t  i s  e a s i e r  t o  g e t  s t a r t e d  and f i n i s h .  



Two c h a r t s  compare EVA w i t h  I V A  on s e v e r a l  d i f f e r e n t  measures. Fo r  most 
o f  these ,  I V A  o f f e r s  a  s i g n i f i c a n t  advantage. Our p r e f e r e n c e  i s  f o r  I V A  
u t i l i z i n g  man-in-a-can, wh ich b r i n g s  d i r e c t  b i n o c u l a r  v i s i o n  (and dep th  
p e r c e p t i o n )  t o  t h e  w o r k s i t e .  The advantages o f  human a d a p t a b i l i t y  and 
v e r s a t i l i t y  can be maximized by  h a v i n g  man i n  c l o s e  p r o x i m i t y  t o  t h e  work he 
i s  p e r f  o rmi  ng . 

F i g u r e  1 
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THFR''uIA1. ?RCjTECTIO:"I SYSTEM .-:E'%.I ,? 

F i g u r e  3 



Figure  4 

TELEPRESENCE: DEXTEROUS MANIPULATOR AND RMS 
PERFORM MODULE EXCHANGE ON MMS 
ATTACH ED TO H PA 

F igure  5 
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F i g u r e  6 

G"? 2r\?iViAN LARGE AMPLITUDE SP,S.TE S!i!i'-AT':i;L'j 

* SIX D E G R E E S  OF FREEDOM 

F i g u r e  7 
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EVA EVENTS & TIMES TO SERVICE 
ONE MMS W P E  SATELLITE 

DEPRESS CABIN 

7 

TRAVERSE TO OCP k 
(6 MIN) (10 MIN) 

(5 MIN) (r 15 MIN) (30 MIN) (15 MIN) 

8 I ( TOTAL TIME = 176 MlN 
DETACH TETHER. 
INGRESS, CLOSE'HATCH CURRENT PRODUCTIVITY = 15 + 30 = 26% 
REPRESSURIZE CABIN & 4PSI SUIT -- 
REMOVE EVA SUITS 1713 

(34 MIN) 

IVA EVENTS & TIMES TO SERVICE 
ONE MMS TYPE SATELLlTE 

i C/O MANIPULATOR PICKUP TRANSLATE 

WORK STATION TELEOP WITH TO 
RMS WORKSITE 

I 
(10 MIN) 

1 
(5 MIN) 

EVENT TIME' 

BOTTOM BOLT. TOP BOLT & HOLD. RECEIVING RACK 

(5 MIN) (5 MIN) (5 MIN) 

(7 MIN) (10 MIN) (64 MIN) (15 MIN) 

TOTAL TIME = 129 MIN 

PRODUCTIVITY = 32 + 64 = 74% - 
129 

Figure 8 



EVA vs BVA: SOME COMPARISONS 

ISSUE 

NIUMBER OF WORKERS: 
- OUTSBDE VEHlCLE 

- TOTAL WORMERS 
* WORKER FATIGUE 

* WORK CONTINUITY 

a TASK EFFICPENCY 
(SpUBJECBBVE ESTIMATES 
W'iO DETADLED STUDY) 

2 (BUDDY SYSTEM 
(REQ'D TO DATE) 

1 (FOR RMS) 

3 
STRENUOUS, NO 
RELIEF 

STOQFOWSOUTb-8 
ATLANTIC ANOMALY 
(EVERY 1 612 HOURS) 
MOST EFFICIENT 

IVA - ADVANTAGE 

2 (RMS & TELEOP) 
OR 

1 (MAN IN CAN) 
2 OR 1 IVA 
ALLEVIATE BY SVA 
SWITCHING 
WMS & TELEBP 
CONTINUOUS IVA 

CURRENT SOA: 2X EVA EVA 
FUTURE SOA: 1 X  EVA NEITHER 

EVA vs IVA: COMPARISONS (CONT9DD) 

ISSUE EVA - lVA - ADVANTAGE 
JOB EFFICIENCY: 
- GENERAL LONG PREP f !ME RAPlD CHECKOUT TBD 

WITHOUT 4 HOUR (k PREPARATION, EASY 
PREBREATHING LUNCH BREAK 

- SERVlGE MMS 2.9 HOURS 2.1 HOURS IVA WITH 
SAiFETY CURRENT TECH. 
- PEOPLE UNHEALTHY, SAFE 

HAZARDOUS 
- FACILITIES bll EQUIP RISKY SAFEST-ADV TECH I VA 

INCREASES SAFETY 
DEVELOPMENT COSTS dS1501VI FOR $ 8M - MANlPULATORS IVA 

NEW 8PSD SUIT &$130M - MAN IN CAN STANDOFF 
RElCURRlNG COSTS 7 $16DM/YEAR FOR TBD, BUT SMALL I VA 

160 EVAs 

IVA APPEARS TO OFFER 

F i g u r e  9 
"USGPO: 1984  - 559-109/10420 
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